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We examine the effect of the dynamics of the internal magnetic field on the staircase magnetization curves
observed in large-spin molecular magnets. We show that the size of the magnetization steps depends sensi-
tively on the intermolecular interactions, even if these are very small compared to the intramolecular couplings.

The magnetization dynamics of nanoscale magnets, i.e.,
systems like Mn12-acetate and Fe8, have been studied experi-
mentally and theoretically lately.1–7 At sufficiently low tem-
peratures quantum effects are observed, due to the discrete-
ness of the energy levels involved. When the magnetization
of a crystal of such molecules is measured during a sweep of
the external magnetic field, a staircase hysteresis loop is ob-
tained. The steep parts of the staircase correspond to the
values of the external magnetic field where there is a cross-
ing of adiabatic energy levels. Several aspects of this quan-
tum effect were studied in Refs. 8–13. In a zero-temperature
calculation, one finds that the magnetization can only change
in steps, very similar to the steps observed in recent experi-
ments on high-spin molecules Mn12-acetate and Fe8. At ev-
ery crossing, only two levels play a role and the transition
probability can be calculated using the Landau-Zener-
Stückelberg~LZS! mechanism.14–16 Two parameters deter-
mine the LZS transition: the energy splitting at the crossing
and the sweep rate of the magnetic field.

The size of the energy splitting which leads to a LZS
transition probability is determined by the off-diagonal terms
in the Hamiltonian describing the system. A straightforward
perturbative calculation shows that this splitting is roughly
scaled likeG2uDmu whereG determines the magnitude of the
off-diagonal terms andDm denotes the difference in magne-
tization of the two relevant levels. In the absence of a trans-
verse applied field the energy-level splittings in the high-spin
molecules mentioned above are so small that the probability
for a single LZS transition is effectively zero, unless the
applied longitudinal field is rather large~see, for example,
Ref. 7!.

In the crystal the magnetic field felt by a particular mol-
ecule is the sum of the external field and the internal field
due to the presence of other magnetic molecules. As the
intermolecular magnetic couplings in these materials are
weak compared to the intramolecular interaction between the
spins, it seems reasonable to consider the former as a pertur-
bation. The purpose of this paper is to demonstrate that this
argument fails in the case of LZS transitions. The point is
that the LZS transition probability depends on the rate of
change of the effective magnetic fieldat the crossing, which
can be changed significantly by the presence of the internal

magnetic field. The magnetization steps are found to be
strongly affected by the type of interactions among mol-
ecules. We call this mechanism the feedback effect on mag-
netization steps~FEMS!.

We first illustrate the effect for the case of the
Mn12-acetate molecules. As a model Hamiltonian for thisS
510 system we take7

H52D1Sz
22D4~Sx

41Sy
41Sz

4!2ct sinuSx

2~ct cosu1l^Sz&!Sz . ~1!

Compared to the model of Ref. 7 the extra feature in Hamil-
tonian ~1! is the presence of a mean-field term, the strength
of which we parametrize byl. It is clear that in this mean-
field approach any new effect appears as a result of global
changes of the internal field generated by all the molecules
and is not due to local fluctuations which should be treated
separately.19 It is important to note that the FEMS is due to
the internal spin dynamics and is also present in the absence
of interactions with other degrees of freedom.20–26

Quantitative results for the zero-temperature nonequilib-
rium dynamics of model~1! can only be obtained through a
numerical integration of the Schro¨dinger equation. Using
standard techniques10 we compute the magnetization steps
for several values ofl. The results forD150.64, D4
50.004, tilt angleu51°, and sweep ratec50.001~see Ref.
7; we use dimensionless units throughout this paper! are
shown in Fig. 1.

It is clear that the dynamics of the internal field can
change the size of the magnetization steps considerably. The
FEMS is observed for alllÞ0. Note that the values ofulu
we used are not unrealistic (ulu'D4!D1), but rather small
if we relatel to the dipole-dipole interaction which would
yield a l which is 10–100 times larger.18

At very low temperatures experiments7 show steps at
lower values ofH than the ones at which we observe steps in
our calculation. In fact, for the set of model parameters given
in Eq. ~1! a much slower sweep ratec, much too slow for
numerical calculations, is required if we want to study the
effect of the internal field at all level crossings.
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Therefore it is expedient to turn to a toy model inspired
by the one used to describe Fe8.6 We take aS52 model with
the following Hamiltonian:6

H52DSz
21E~Sx

22Sy
2!1GSx2~ct1l^Sz&!Sz , ~2!

where we takeD51, E50.08, andG50.08. These param-
eters are chosen such that we get two steps with a probability
of about one-half.

In Fig. 2 we show the magnetization during a sweep of
the magnetic field, with a sweep ratec50.01, for several
values ofl. We see that the FEMS effect is large.

The transition probabilities are given in Table I. We
clearly see a large change in the transition probabilities due
to the presence of the internal field.

A deeper understanding of the origin of the FEMS effect
can be obtained by considering the system ofN S51/2 mol-
ecules described by the Hamiltonian

H5(
i 51

N F2Gs i
x2J(

j . i

N

s i
zs j

z1cts i
zG , ~3!

wherec is the sweep rate,G is the transverse field, andJ
determines the interaction strength between the molecules
(uJu!G). For simplicity we consider couplings betweenz
components only and assume the coupling between the mol-
ecules to be the same. SinceuJu is small, we assume that we
can make a mean-field-like approximation. The occurrence
of the FEMS does not depend on these simplifications~see
below!. This yields a Hamiltonian of a single molecule in a
background field:

H52Gsx2~ct1l^sz&!sz , ~4!

where l}J is an effective interaction. The system is pre-
pared in the ground state, corresponding to a large negative
time t, and the magnetic field is swept with constant velocity,
until a large positive time is reached. Then, in the LZS case
with l50, the transition probability is given by the well-
known LZS formula p512exp(2pG2/c). For lÞ0 we
write the Schro¨dinger equation corresponding to Eq.~4! in
component form:

iu85@2ct2l~2uuu221!#u2Gd, ~5!

id85@ct1l~2uuu221!#d2Gu, ~6!

where we also have the normalization conditionuuu21udu2
51. From numerical simulations we~see below! find that the
tunneling is suppressed~enhanced! by the presence of a feed-
back term with positive~negative! l. This can be understood
in terms of a changed effective sweep rate at the point of the
transition. Because the effective magnetic field at the posi-
tion of the molecule is given byct1l(2uuu221), the effec-
tive sweep rate would bec1ld^sz&/dt.

If l is small but nonzero, the mean-field term only con-
tributes at the point of the crossing. So we look at a Taylor
expansion around the point of the transitiontc ~to be deter-
mined later!,

u~ t !5u01u1~ t2tc!1O„~ t2tc!
2
…, ~7!

and a similar expression ford(t). We insert this expansion in
Eqs.~5! and ~6! and obtain

i ũ8~ t̃ !52 c̃ t̃ ũ~ t̃ !2Gd̃~ t̃ !, ~8!

i d̃8~ t̃ !5 c̃ t̃ d̃~ t̃ !2Gũ~ t̃ !, ~9!

with t̃ 5t2tc ,c̃5c14l Re(u0u1* ) is the renormalized
sweep rate, and were Re(u) denotes the real part ofu. We
definetc as the point at whichct1l^sz& changes sign, so

tc5
l

c
~122 uu0u2!. ~10!

TABLE I. Transition probabilities corresponding to the steps in
Fig. 2.

l 20.03 20.02 20.01 0 0.01

Step 1 0.23 0.17 0.15 0.13 0.12
Step 2 0.90 0.78 0.59 0.48 0.40

FIG. 1. Magnetization dynamics of the Mn12-acetate model~1!,
for several values for the intermolecular coupling,l520.005~top
curve!, 20.003,20.001, 0, 0.003~bottom curve!.

FIG. 2. Magnetization dynamics of theS52 model ~2!, for
several values for the intermolecular coupling,l520.03 ~top
curve!, 20.02,20.01, 0, 0.01~bottom curve!.
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This enables us to writeũ05u0 and ũ15u1. To determine
these constants we use Zener’s solution15,17 and the proper-
ties of Weber functions. We find

uu0u25
p

4
de2pd/4U 1

GS 11
id

4 DU
2

5
1

2
@12~12p!2#,

~11!

where p is the new probability for crossing, i.e.,p51
2exp(2pG2/c̃) andd5G2/ c̃, andtc5l(12p)2/c. The shift
of the field at which the transition occurs can be written as
DH5l(12p)2. To determinec̃ we calculate

Re~u0 u1* !5Ac̃
pd

2
e2dp/4 Re

e2 ip/4

G~11 id/4!GS 1

2
2 id/4D .

~12!

We find that Eq.~12! can be approximated by

Re~u0 u1* !'Ap c̃

8
de2dp/4, ~13!

with an error of maximally 10%~see Fig. 3!. Within this
approximation,c̃ is given by the implicit equation

c̃'c1lG2A2p/ c̃e2G2p/4c̃. ~14!

A simple relation can be obtained by replacingc̃ by c on the
right hand side. Then

c̃'c1lG2A2p/ce2pG2/4c ~15!

and

p'12expS 2
pG2

c

1

11lG2A2p/c3e2G2p/4cD . ~16!

The resulting probabilities are shown in Fig. 3. The resulting
probabilities based on a numerical solution of Eq.~13! or
~14! for c̃ show similar behavior. Also shown are the results
obtained from the exact numerical solution of the Schro¨-
dinger equation~4!. As a test of the validity of the mean-field
approximation we also show the result of four interactingS
51/2 spins, where we assumedl5(N21)J. Clearly the ex-
act results confirm the validity of the mean-field approxima-
tion and the simple analytic expression~16!.

For values ofl below approximately22.0 the descrip-
tion in terms of a renormalized sweep rate breaks down,
which can also be seen from the singularity in the argument
of the exponent in Eq.~16!. This is because the picture of a
simple, single crossing breaks down and the effective mag-
netic field at the position of the spin will no longer be a
strictly increasing function of time. We conclude that the
expression~16! captures the main features of the FEMS at a
single crossing.

The relevant parameters, controlling the size of the
FEMS, areG/Ac andl/Ac. Only for S51/2 is the energy-
level splitting directly proportional toG2. For the high-spin
molecules this is not the case~see above!, in particular for
the levels with largeumu. Although in these cases the effec-
tive energy level splitting that enters the approximate two-
level description can be small, a rather small value ofl can
nevertheless change the transition probability significantly.

We have shown that the magnetization steps in the hys-
teresis loops of clusters of high-spin molecules may depend
sensitively on the change of the internal magnetic field at
these steps. This implies that the dynamics of this internal
field has to be incorporated in a description of the magneti-
zation dynamics, even if its magnitude appears to be small
compared to the other model parameters~for large spin!. At
finite temperatures the effect described in this paper will be
enhanced further due to the thermalization to states with
lower energy and larger magnetization.27
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