7,737 research outputs found
Effects of congenital hearing loss and cochlear implantation on audiovisual speech perception in infants and children
Purpose: Cochlear implantation has recently become available as an intervention strategy for young children with profound hearing impairment. In fact, infants as young as 6 months are now receiving cochlear implants (CIs), and even younger infants are being fitted with hearing aids (HAs). Because early audiovisual experience may be important for normal development of speech perception, it is important to investigate the effects of a period of auditory deprivation and amplification type on multimodal perceptual processes of infants and children. The purpose of this study was to investigate audiovisual perception skills in normal-hearing (NH) infants and children and deaf infants and children with CIs and HAs of similar chronological ages. Methods: We used an Intermodal Preferential Looking Paradigm to present the same woman\u27s face articulating two words ( judge and back ) in temporal synchrony on two sides of a TV monitor, along with an auditory presentation of one of the words. Results: The results showed that NH infants and children spontaneously matched auditory and visual information in spoken words; deaf infants and children with HAs did not integrate the audiovisual information; and deaf infants and children with CIs initially did not initially integrate the audiovisual information but gradually matched the auditory and visual information in spoken words. Conclusions: These results suggest that a period of auditory deprivation affects multimodal perceptual processes that may begin to develop normally after several months of auditory experience
Initial state maximizing the nonexponentially decaying survival probability for unstable multilevel systems
The long-time behavior of the survival probability for unstable multilevel
systems that follows the power-decay law is studied based on the N-level
Friedrichs model, and is shown to depend on the initial population in unstable
states. A special initial state maximizing the asymptote of the survival
probability at long times is found and examined by considering the spontaneous
emission process for the hydrogen atom interacting with the electromagnetic
field.Comment: 5 pages, 1 table. Accepted for publication in Phys. Rev.
Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon
Recently, atomic ensemble and single photons were successfully entangled by
using collective enhancement [D. N. Matsukevich, \textit{et al.}, Phys. Rev.
Lett. \textbf{95}, 040405(2005).], where atomic internal states and photonic
polarization states were correlated in nonlocal manner. Here we experimentally
clarified that in an ensemble of atoms and a photon system, there also exists
an entanglement concerned with spatial degrees of freedom. Generation of
higher-dimensional entanglement between remote atomic ensemble and an
application to condensed matter physics are also discussed.Comment: 5 pages, 3 figure
Measuring Qutrit-Qutrit Entanglement of Orbital Angular Momentum States of an Atomic Ensemble and a Photon
Three-dimensional entanglement of orbital angular momentum states of an
atomic qutrit and a single photon qutrit has been observed. Their full state
was reconstructed using quantum state tomography. The fidelity to the maximally
entangled state of Schmidt rank 3 exceeds the threshold 2/3. This result
confirms that the density matrix cannot be decomposed into ensemble of pure
states of Schmidt rank 1 or 2. That is, the Schmidt number of the density
matrix must be equal to or greater than 3.Comment: 5 pages, 4 figure
One-Dimensional Approximation of Viscous Flows
Attention has been paid to the similarity and duality between the
Gregory-Laflamme instability of black strings and the Rayleigh-Plateau
instability of extended fluids. In this paper, we derive a set of simple
(1+1)-dimensional equations from the Navier-Stokes equations describing thin
flows of (non-relativistic and incompressible) viscous fluids. This
formulation, a generalization of the theory of drop formation by Eggers and his
collaborators, would make it possible to examine the final fate of
Rayleigh-Plateau instability, its dimensional dependence, and possible
self-similar behaviors before and after the drop formation, in the context of
fluid/gravity correspondence.Comment: 17 pages, 3 figures; v2: refs & comments adde
Modular differential equations for torus one-point functions
It is shown that in a rational conformal field theory every torus one-point
function of a given highest weight state satisfies a modular differential
equation. We derive and solve these differential equations explicitly for some
Virasoro minimal models. In general, however, the resulting amplitudes do not
seem to be expressible in terms of standard transcendental functions.Comment: 19 pages, LaTeX; reference adde
- …