10,387 research outputs found

    Parametrization of the Driven Betatron Oscillation

    Full text link
    An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam motion in a synchrotron. By observing this coherent motion, the optical parameters can be directly measured at the beam position monitor locations. The driven oscillation induced by an AC dipole will generate a phase space ellipse which differs from that of the free oscillation. If not properly accounted for, this difference can lead to a misinterpretation of the actual optical parameters, for instance, of 6% or more in the cases of the Tevatron, RHIC, or LHC. The effect of an AC dipole on the linear optics parameters is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. Beam position data taken under the influence of an AC dipole, with this new interpretation in mind, can lead to more precise measurements of the normal Courant-Snyder parameters. This new parameterization of the driven motion is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole.Comment: 8 pages, 8 figures, and 1 tabl

    Effects of congenital hearing loss and cochlear implantation on audiovisual speech perception in infants and children

    Get PDF
    Purpose: Cochlear implantation has recently become available as an intervention strategy for young children with profound hearing impairment. In fact, infants as young as 6 months are now receiving cochlear implants (CIs), and even younger infants are being fitted with hearing aids (HAs). Because early audiovisual experience may be important for normal development of speech perception, it is important to investigate the effects of a period of auditory deprivation and amplification type on multimodal perceptual processes of infants and children. The purpose of this study was to investigate audiovisual perception skills in normal-hearing (NH) infants and children and deaf infants and children with CIs and HAs of similar chronological ages. Methods: We used an Intermodal Preferential Looking Paradigm to present the same woman\u27s face articulating two words ( judge and back ) in temporal synchrony on two sides of a TV monitor, along with an auditory presentation of one of the words. Results: The results showed that NH infants and children spontaneously matched auditory and visual information in spoken words; deaf infants and children with HAs did not integrate the audiovisual information; and deaf infants and children with CIs initially did not initially integrate the audiovisual information but gradually matched the auditory and visual information in spoken words. Conclusions: These results suggest that a period of auditory deprivation affects multimodal perceptual processes that may begin to develop normally after several months of auditory experience

    Measurement of coupling resonance driving terms with the AC dipole

    Get PDF
    Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole

    Negative modes and the thermodynamics of Reissner-Nordstr\"om black holes

    Full text link
    We analyse the problem of negative modes of the Euclidean section of the Reissner-Nordstr\"om black hole in four dimensions. We find analytically that a negative mode disappears when the specific heat at constant charge becomes positive. The sector of perturbations analysed here is included in the canonical partition function of the magnetically charged black hole. The result obeys the usual rule that the partition function is only well-defined when there is local thermodynamical equilibrium. We point out the difficulty in quantising Einstein-Maxwell theory, where the so-called conformal factor problem is considerably more intricate. Our method, inspired by hep-th/0608001, allows us to decouple the divergent gauge volume and treat the metric perturbations sector in a gauge-invariant way.Comment: 24 pages, 1 figure; v2 minor changes to fit published versio

    Initial state maximizing the nonexponentially decaying survival probability for unstable multilevel systems

    Full text link
    The long-time behavior of the survival probability for unstable multilevel systems that follows the power-decay law is studied based on the N-level Friedrichs model, and is shown to depend on the initial population in unstable states. A special initial state maximizing the asymptote of the survival probability at long times is found and examined by considering the spontaneous emission process for the hydrogen atom interacting with the electromagnetic field.Comment: 5 pages, 1 table. Accepted for publication in Phys. Rev.

    Probing the Shape of the Galactic Halo with Hyper-Velocity Stars

    Full text link
    Precise proper motion measurements (sigma_mu ~ 10 mkas/yr) of the recently discovered hyper-velocity star (HVS) SDSS J090745.0+024507 would yield significant constraints on the axis ratios and orientation of a triaxial model for the Galactic halo. Triaxiality of dark matter halos is predicted by Cold Dark Matter models of galaxy formation and may be used to probe the nature of dark matter. However, unless the distance to this star is determined to better than 10%, these constraints suffer from one-dimensional degeneracies, which we quantify. We show how proper motion measurements of several HVSs could simultaneously resolve the distance degeneracies of all such stars and produce a detailed picture of the triaxial halo. Additional HVSs may be found from radial velocity surveys or from parallax/proper-motion data derived from GAIA. High-precision proper-motion measurements of these stars using the Space Interferometry Mission (SIM PlanetQuest) would substantially tighten the constraints they yield on the Galactic potential.Comment: 7 pages, matches printed versio

    Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole

    Full text link
    The center-of-mass energy of two particles colliding near the horizon of a maximally rotating black hole can be arbitrarily high if the angular momentum of either of the incident particles is fine-tuned, which we call a critical particle. We study particle emission from such high-energy collision and reaction in the equatorial plane fully analytically. We show that the unconditional upper limit of the energy of the emitted particle is given by 218.6% of that of the injected critical particle, irrespective of the details of the reaction and this upper limit can be realized for massless particle emission. The upper limit of the energy extraction efficiency for this emission as a collisional Penrose process is given by 146.6%, which can be realized in the collision of two massive particles with optimized mass ratio. Moreover, we analyze perfectly elastic collision, Compton scattering, and pair annihilation and show that net positive energy extraction is really possible for these three reactions. The Compton scattering is most efficient among them and the efficiency can reach 137.2%. On the other hand, our result is qualitatively consistent with the earlier claim that the mass and energy of the emitted particle are at most of order the total energy of the injected particles and hence we can observe neither super-heavy nor super-energetic particles.Comment: 22 pages, 3 figures, typos corrected, reference updated, accepted for publication in Physical Review D, typos correcte

    Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon

    Get PDF
    Recently, atomic ensemble and single photons were successfully entangled by using collective enhancement [D. N. Matsukevich, \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 040405(2005).], where atomic internal states and photonic polarization states were correlated in nonlocal manner. Here we experimentally clarified that in an ensemble of atoms and a photon system, there also exists an entanglement concerned with spatial degrees of freedom. Generation of higher-dimensional entanglement between remote atomic ensemble and an application to condensed matter physics are also discussed.Comment: 5 pages, 3 figure

    Disordered Carbon nanotube alloys in the Effect Medium Super Cell Approximation

    Full text link
    We investigate a disordered single-walled carbon nanotube (SWCNT) in an effective medium super cell approximation (EMSCA). First type of disorder that we consider is the presence of vacancies. Our results show that the vacancies induce some bound states on their neighbor host sites, leading to the creation of a band around the Fermi energy in the SWCNT average density of states.Second type of disorder considered is a substitutional BcbNcnC1cbcnB_{cb}N_{cn}C_{1-cb-cn} alloy due to it's applications in hetrojunctions. We found that for a fixed boron (nitrogen) concentration, by increasing the nitrogen (boron) concentration the averaged semiconducting gap, EgE_{g}, decreases and at a critical concentration it disappears. A consequence of our results for nano electronic devices is that by changing the boron(nitrogen) concentration, one can make a semiconductor SWCNT with a pre-determined energy gap.Comment: 4 page

    Considerations for an Ac Dipole for the LHC

    Get PDF
    Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS, an AC Dipole will be adopted at the LHC for rapid measurements of ring optics. This paper describes some of the parameters of the AC dipole for the LHC, scaling from performance of the FNAL and BNL devices.Comment: proceedings of the 2007 Particle Accelerator Conferenc
    corecore