10,387 research outputs found
Parametrization of the Driven Betatron Oscillation
An AC dipole is a magnet which produces a sinusoidally oscillating dipole
field and excites coherent transverse beam motion in a synchrotron. By
observing this coherent motion, the optical parameters can be directly measured
at the beam position monitor locations. The driven oscillation induced by an AC
dipole will generate a phase space ellipse which differs from that of the free
oscillation. If not properly accounted for, this difference can lead to a
misinterpretation of the actual optical parameters, for instance, of 6% or more
in the cases of the Tevatron, RHIC, or LHC. The effect of an AC dipole on the
linear optics parameters is identical to that of a thin lens quadrupole. By
introducing a new amplitude function to describe this new phase space ellipse,
the motion produced by an AC dipole becomes easier to interpret. Beam position
data taken under the influence of an AC dipole, with this new interpretation in
mind, can lead to more precise measurements of the normal Courant-Snyder
parameters. This new parameterization of the driven motion is presented and is
used to interpret data taken in the FNAL Tevatron using an AC dipole.Comment: 8 pages, 8 figures, and 1 tabl
Effects of congenital hearing loss and cochlear implantation on audiovisual speech perception in infants and children
Purpose: Cochlear implantation has recently become available as an intervention strategy for young children with profound hearing impairment. In fact, infants as young as 6 months are now receiving cochlear implants (CIs), and even younger infants are being fitted with hearing aids (HAs). Because early audiovisual experience may be important for normal development of speech perception, it is important to investigate the effects of a period of auditory deprivation and amplification type on multimodal perceptual processes of infants and children. The purpose of this study was to investigate audiovisual perception skills in normal-hearing (NH) infants and children and deaf infants and children with CIs and HAs of similar chronological ages. Methods: We used an Intermodal Preferential Looking Paradigm to present the same woman\u27s face articulating two words ( judge and back ) in temporal synchrony on two sides of a TV monitor, along with an auditory presentation of one of the words. Results: The results showed that NH infants and children spontaneously matched auditory and visual information in spoken words; deaf infants and children with HAs did not integrate the audiovisual information; and deaf infants and children with CIs initially did not initially integrate the audiovisual information but gradually matched the auditory and visual information in spoken words. Conclusions: These results suggest that a period of auditory deprivation affects multimodal perceptual processes that may begin to develop normally after several months of auditory experience
Measurement of coupling resonance driving terms with the AC dipole
Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole
Negative modes and the thermodynamics of Reissner-Nordstr\"om black holes
We analyse the problem of negative modes of the Euclidean section of the
Reissner-Nordstr\"om black hole in four dimensions. We find analytically that a
negative mode disappears when the specific heat at constant charge becomes
positive. The sector of perturbations analysed here is included in the
canonical partition function of the magnetically charged black hole. The result
obeys the usual rule that the partition function is only well-defined when
there is local thermodynamical equilibrium. We point out the difficulty in
quantising Einstein-Maxwell theory, where the so-called conformal factor
problem is considerably more intricate. Our method, inspired by hep-th/0608001,
allows us to decouple the divergent gauge volume and treat the metric
perturbations sector in a gauge-invariant way.Comment: 24 pages, 1 figure; v2 minor changes to fit published versio
Initial state maximizing the nonexponentially decaying survival probability for unstable multilevel systems
The long-time behavior of the survival probability for unstable multilevel
systems that follows the power-decay law is studied based on the N-level
Friedrichs model, and is shown to depend on the initial population in unstable
states. A special initial state maximizing the asymptote of the survival
probability at long times is found and examined by considering the spontaneous
emission process for the hydrogen atom interacting with the electromagnetic
field.Comment: 5 pages, 1 table. Accepted for publication in Phys. Rev.
Probing the Shape of the Galactic Halo with Hyper-Velocity Stars
Precise proper motion measurements (sigma_mu ~ 10 mkas/yr) of the recently
discovered hyper-velocity star (HVS) SDSS J090745.0+024507 would yield
significant constraints on the axis ratios and orientation of a triaxial model
for the Galactic halo. Triaxiality of dark matter halos is predicted by Cold
Dark Matter models of galaxy formation and may be used to probe the nature of
dark matter. However, unless the distance to this star is determined to better
than 10%, these constraints suffer from one-dimensional degeneracies, which we
quantify. We show how proper motion measurements of several HVSs could
simultaneously resolve the distance degeneracies of all such stars and produce
a detailed picture of the triaxial halo. Additional HVSs may be found from
radial velocity surveys or from parallax/proper-motion data derived from GAIA.
High-precision proper-motion measurements of these stars using the Space
Interferometry Mission (SIM PlanetQuest) would substantially tighten the
constraints they yield on the Galactic potential.Comment: 7 pages, matches printed versio
Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole
The center-of-mass energy of two particles colliding near the horizon of a
maximally rotating black hole can be arbitrarily high if the angular momentum
of either of the incident particles is fine-tuned, which we call a critical
particle. We study particle emission from such high-energy collision and
reaction in the equatorial plane fully analytically. We show that the
unconditional upper limit of the energy of the emitted particle is given by
218.6% of that of the injected critical particle, irrespective of the details
of the reaction and this upper limit can be realized for massless particle
emission. The upper limit of the energy extraction efficiency for this emission
as a collisional Penrose process is given by 146.6%, which can be realized in
the collision of two massive particles with optimized mass ratio. Moreover, we
analyze perfectly elastic collision, Compton scattering, and pair annihilation
and show that net positive energy extraction is really possible for these three
reactions. The Compton scattering is most efficient among them and the
efficiency can reach 137.2%. On the other hand, our result is qualitatively
consistent with the earlier claim that the mass and energy of the emitted
particle are at most of order the total energy of the injected particles and
hence we can observe neither super-heavy nor super-energetic particles.Comment: 22 pages, 3 figures, typos corrected, reference updated, accepted for
publication in Physical Review D, typos correcte
Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon
Recently, atomic ensemble and single photons were successfully entangled by
using collective enhancement [D. N. Matsukevich, \textit{et al.}, Phys. Rev.
Lett. \textbf{95}, 040405(2005).], where atomic internal states and photonic
polarization states were correlated in nonlocal manner. Here we experimentally
clarified that in an ensemble of atoms and a photon system, there also exists
an entanglement concerned with spatial degrees of freedom. Generation of
higher-dimensional entanglement between remote atomic ensemble and an
application to condensed matter physics are also discussed.Comment: 5 pages, 3 figure
Disordered Carbon nanotube alloys in the Effect Medium Super Cell Approximation
We investigate a disordered single-walled carbon nanotube (SWCNT) in an
effective medium super cell approximation (EMSCA).
First type of disorder that we consider is the presence of vacancies.
Our results show that the vacancies induce some bound states on their
neighbor host sites, leading to the creation of a band around the Fermi energy
in the SWCNT average density of states.Second type of disorder considered is a
substitutional alloy due to it's applications in
hetrojunctions. We found that for a fixed boron (nitrogen) concentration, by
increasing the nitrogen (boron) concentration the averaged semiconducting gap,
, decreases and at a critical concentration it disappears. A consequence
of our results for nano electronic devices is that by changing the
boron(nitrogen) concentration, one can make a semiconductor SWCNT with a
pre-determined energy gap.Comment: 4 page
Considerations for an Ac Dipole for the LHC
Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS,
an AC Dipole will be adopted at the LHC for rapid measurements of ring optics.
This paper describes some of the parameters of the AC dipole for the LHC,
scaling from performance of the FNAL and BNL devices.Comment: proceedings of the 2007 Particle Accelerator Conferenc
- …