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Ryoichi Miyamoto

October 27, 2010

Abstract

Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from cor-

responding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a

motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron

phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole.

Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities.

The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an

expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an

impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and

present an analytical method to determine the coupling resonance driving terms from quantities observed using the

AC dipole.

1 Introduction

An AC dipole is one of instruments, such as a kicker dipole magnet, to excite a coherent beam motion in a synchrotron ring
[1]. Observations of the excited coherent beam motion with beam position monitors (BPMs) allow prompt measurements
of beam optical parameters in the ring. Optical parameters which can be measured in this way are not only standard
Courant-Snyder parameters and (betatron) phase advance. Resonance driving terms due perturbative fields can be also
measured from spectra of the coherent beam motion [2].

The motion excited with an AC dipole, referred to as “driven (betatron) motion”, is not completely identical to the
normal betatron motion, referred to as “free (betatron) motion” in contrast to the driven motion, in the same ring [3, 4].
The difference can be interpreted as an additional quadrupole field at the location of the AC dipole and the driven
motion is parametrized with a new set of Courant-Snyder parameters and phase advance [5]. In presence of the AC
dipole, the modes driven by perturbative fields are also altered [6, 7]. In this note, we derive an analytical expression
of coupled driven motion excited with two AC dipoles in presence of weak skew quadrupole fields and demonstrate that
the motion can be parametrized with a new set of coupling resonance driving terms (CRDTs), similar to the case of the
one-dimensional driven motion. We also present an analytical procedure to determine the normal CRDTs for the free
motion from the new CRDTs for the driven motion, which are the quantities directly measured by observing the driven
motion.

2 Review of Basic Concepts

In this section, we review a few basic concepts and establish notations used in this note.

2.1 Complex Representation of Phase Space

In this section, we review a complex representation of phase space used in this note. Equations of motion for two-
dimensional betatron motion are given by

d2x

ds2
+Kx(s)x = −∆By(x, y, s)

(Bρ)
(1)

d2y

ds2
+Ky(s)y =

∆Bx(x, y, s)

(Bρ)
, (2)
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where s (−∞ < s <∞) is longitudinal coordinate, Kx(s) and Ky(s) are effective gradients, ∆Bx(x, y, s) and ∆By(x, y, s)
are perturbative magnetic fields, and (Bρ) is magnetic rigidity. When we consider turn-by-turn motion of a beam observed
at a fixed location in a synchrotron ring, it may be convenient to rewrite the longitudinal coordinate s with number of
revolution n, circumference of the ring C, and a parameter s̄ (0 ≤ s̄ < C) denoting the location of the observation:

s = nC + s̄ . (3)

Mathematically, n is the largest integer smaller than or equal to s/C and s̄ is the reminder of s/C. By using n and s̄,
the solutions of Equations (1) and (2) are occasionally written as x(n; s̄) and y(n; s̄) instead of x(s) and y(s) in this note.
A periodic function of s such as Kx(s) obviously satisfies Kx(s) = Kx(s̄). The well known solutions of the homogeneous
parts of Equations (1) and (2) are [8]

x(n; s̄) = Ax
√

βx(s̄) cos[2πνxn+ ψx(s̄) + φx] (4)

y(n; s̄) = Ay
√

βy(s̄) cos[2πνyn+ ψy(s̄) + φy] (5)

and their slopes are

x′(n; s̄) = − Ax
√

βx(s̄)
sin[2πνxn+ ψx(s̄) + φx]−

Axαx(s̄)
√

βx(s̄)
cos[2πνxn+ ψx(s̄) + φx] (6)

y′(n; s̄) = − Ay
√

βy(s̄)
sin[2πνxn+ ψy(s̄) + φy]−

Ayαy(s̄)
√

βy(s̄)
cos[2πνxn+ ψy(s̄) + φy] , (7)

where the prime denotes derivative with respect to s, Ax, Ay, φx, and φy are constants of motion, βx(s̄), βy(s̄), αx(s̄),
and αy(s̄) are Courant-Snyder parameters, ψx(s) and ψy(s) are phase advances from s = 0 to s, and νx = ψx(C)/2π
and νy = ψy(C)/2π are betatron tunes. The phase advances from an arbitrary point s1 to the other s2 are denoted by
ψx(s2, s1) and ψy(s2, s1). The phase space positions of these solutions can be expressed in compact forms in complex
representations x̃ = x+ i[αx(s̄)x+ βx(s̄)x

′] and ỹ = y + i[αy(s̄)y + βy(s̄)y
′]:

x̃(n; s̄) = Ax
√

βx(s̄)e
−2πiνxn−iψx(s̄)−iφx (8)

ỹ(n; s̄) = Ay
√

βy(s̄)e
−2πiνyn−iψy(s̄)−iφy , (9)

We use symbols X (ν; s̄) and Y (ν; s̄) for Fourier components of x̃(n; s̄) and ỹ(n; s̄) with tune ν. We can choose the
normalization of the Fourier Transformation so that

X (−νx; s̄) = Ax
√

βx(s̄)e
−iψx(s̄)−iφx (10)

Y (−νy; s̄) = Ay
√

βy(s̄)e
−iψy(s̄)−iφy . (11)

Because BPMs can measure only positions, x(n; s̄) and y(n; s̄), and not slopes, x′(n; s̄) and y′(n; s̄), we have to use
two adjacent BPMs to construct phase space at one BPM location [9]. We consider two adjacent BPMs located at s̄1
and s̄2. From Equations (4), (5), (6), (7), (8), and (9) the following equalities hold:

x̃(n; s̄1) =
1

i sin[ψx(s̄2, s̄1)]

[

eiψx(s̄2,s̄1)x(n; s̄1)−
√

βx(s̄1)

βx(s̄2)
x(n; s̄2)

]

(12)

ỹ(n; s̄1) =
1

i sin[ψy(s̄2, s̄1)]

[

eiψy(s̄2,s̄1)y(n; s̄1)−
√

βy(s̄1)

βy(s̄2)
y(n; s̄2)

]

. (13)

We note that the phase advances ψx(s̄2, s̄1) and ψy(s̄2, s̄1) and the ratios of the β-functions βx(s̄1)/βx(s̄2) and βy(s̄1)/βy(s̄2)
can be measured with these two BPMs. With these equations, the complex phase space position at the locations of BPMs
can be constructed for every revolution.

2.2 Uncoupled Driven Betatron Motion

In this section, we review properties of the uncoupled driven motion excited by two orthogonal AC dipoles. When
a perfectly uncoupled ring has one horizontal and one vertical AC dipoles, where the horizontal (vertical) AC dipole
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produces a vertical (horizontal) field and excites a horizontal (vertical) motion, the equations of motion are given by

d2x

ds2
+Kx(s̄)x = −

∞
∑

m=−∞

θhδ(s− s̄h −mC) cos(2πνx,hm+ φh) (14)

d2y

ds2
+Ky(s̄)y = −

∞
∑

m=−∞

θvδ(s− s̄v −mC) cos(2πνy,vm+ φv) , (15)

where δ(s) is Dirac’s delta function and the subscripts “h” or “v” indicate that the parameter is related to the horizontal
or vertical AC dipole: θh and θv are deflection angles of the AC dipoles, s̄h and s̄v (0 ≤ s̄h, s̄v < C) are locations of the
AC dipoles, νx,h and νy,v are driving tunes of the AC dipoles, and φh and φv are constant phases of the AC dipole fields.
The minus signs on the right-hand-sides are a mere convention. When the deflection angles of the AC dipoles, θh and θv,
are adiabatic parameters, the particular solutions of these equations are given by [3, 4]

x(n; s̄) =
θh
√

βx(s̄h)

4 sin[π(νx,h − νx)]

√

βx(s̄) cos[2πνx,hn+ ψx(s̄, s̄h) + π(νx,h − νx)sgn(s̄− s̄h) + φh]

− θh
√

βx(s̄h)

4 sin[π(νx,h + νx)]

√

βx(s̄) cos[2πνx,hn− ψx(s̄, s̄h) + π(νx,h + νx)sgn(s̄− s̄h) + φh] (16)

and

y(n; s̄) =
θv
√

βy(s̄v)

4 sin[π(νy,v − νy)]

√

βy(s̄) cos[2πνy,vn+ ψy(s̄, s̄v) + π(νy,v − νy)sgn(s̄− s̄v) + φv]

− θv
√

βy(s̄v)

4 sin[π(νy,v + νy)]

√

βy(s̄) cos[2πνy,vn− ψy(s̄, s̄v) + π(νy,v + νy)sgn(s̄− s̄v) + φv] , (17)

where sgn(s) = s/|s| is sign function. In the complex representation discussed in the previous section, the solutions are
given by

x̃(n; s̄) =
θh
√

βx(s̄h)

4 sin[π(νx,h − νx)]

√

βx(s̄)e
−2πiνx,hn−iψx(s̄,s̄h)−πi(νx,h−νx)sgn(s̄−s̄h)−iφh

− θh
√

βx(s̄h)

4 sin[π(νx,h + νx)]

√

βx(s̄)e
2πiνx,hn−iψx(s̄,s̄h)+πi(νx,h+νx)sgn(s̄−s̄h)+iφh (18)

and

ỹ(n; s̄) =
θv
√

βy(s̄v)

4 sin[π(νy,v − νy)]

√

βy(s̄)e
−2πiνy,vn−iψy(s̄,s̄v)−πi(νy,v−νy)sgn(s̄−s̄v)−iφv

− θv
√

βy(s̄v)

4 sin[π(νy,v + νy)]

√

βy(s̄)e
2πiνy,vn−iψy(s̄,s̄v)+πi(νy,v+νy)sgn(s̄−s̄v)+iφv . (19)

The two terms in Equations (16), (17), (18), and (19) represent modes of difference and sum resonances driven by one
AC dipole. We note that the modes of the difference and sum resonances rotate in opposite directions in the phase space.

Equations (16) and (17) can be written in simpler forms if we introduce new optical parameters for the driven motion,
βx,h(s̄), βy,v(s̄), αx,h(s̄), αy,v(s̄), ψx,h(s2, s1), and ψy,v(s2, s1), [5]:

x(n; s̄) = Ax,h
√

βx,h(s̄) cos[2πνx,hn+ ψx,h(s̄, s̄h) + φh] (20)

y(n; s̄) = Ay,v
√

βy,v(s̄) cos[2πνy,vn+ ψy,v(s̄, s̄v) + φv] (21)

and, then, the slopes are given by

x′(n; s̄) = − Ax,h
√

βx,h(s̄)
sin[2πνx,hn+ ψx,h(s̄, s̄h) + φh]−

Ax,hαx,h(s̄)
√

βx,h(s̄)
cos[2πνx,hn+ ψx,h(s̄, s̄h) + φh] (22)

y′(n; s̄) = − Ay,v
√

βy,v(s̄)
sin[2πνy,vn+ ψy,v(s̄, s̄v) + φv]−

Ay,vαy,v(s̄)
√

βy,v(s̄)
cos[2πνy,vn+ ψy,v(s̄, s̄v) + φv] , (23)
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where Ax,h and Ay,v are constants of motion:

Ax,h =
θh

4 sin(πδh)

√

βx(s̄h)(1− λ2h) (24)

Ay,v =
θv

4 sin(πδv)

√

βy(s̄v)(1− λ2v) , (25)

δh = νx,h − νx and δv = νy,v − νy are small parameters typically on the order of 0.01 or maybe less, and λh and λv are
other small parameters describing the ratios of magnitudes of the difference and sum resonances:

λh =
sin[π(νx,h − νx)]

sin[π(νx,h + νx)]
(26)

λv =
sin[π(νy,v − νy)]

sin[π(νy,v + νy)]
. (27)

The new optical parameters of the driven motion are related to the corresponding parameters of the free motion by

βx,h(s̄) =
1 + λ2h − 2λh cos[2Ψx(s̄, s̄h)]

1− λ2h
βx(s̄) (28)

βy,v(s̄) =
1 + λ2v − 2λv cos[2Ψy(s̄, s̄v)]

1− λ2v
βy(s̄) (29)

αx,h(s̄) =
1 + λ2h − 2λh cos[2Ψx(s̄, s̄h)]

1− λ2h
αx(s̄)−

2λh sin[2Ψx(s̄, s̄h)]

1− λ2h
(30)

αy,v(s̄) =
1 + λ2v − 2λv cos[2Ψy(s̄, s̄v)]

1− λ2v
αy(s̄)−

2λv sin[2Ψy(s̄, s̄v)]

1− λ2v
(31)

and

tan[Ψx,h(s̄, s̄h)] =
1 + λh
1− λh

tan[Ψx(s̄, s̄h)] (32)

tan[Ψy,v(s̄, s̄v)] =
1 + λv
1− λv

tan[Ψy(s̄, s̄v)] , (33)

where Ψx(s̄2, s̄1), Ψy(s̄2, s̄1), Ψx,h(s̄2, s̄1), and Ψy,v(s̄2, s̄1) are shorthand notations of

Ψx(s̄2, s̄1) = ψx(s̄2, s̄1)− πνxsgn(s̄2 − s̄1) (34)

Ψy(s̄2, s̄1) = ψy(s̄2, s̄1)− πνysgn(s̄2 − s̄1) (35)

Ψx,h(s̄2, s̄1) = ψx,h(s̄2, s̄1)− πνx,hsgn(s̄2 − s̄1) (36)

Ψy,v(s̄2, s̄1) = ψy,v(s̄2, s̄1)− πνy,vsgn(s̄2 − s̄1) . (37)

The arguments of the phases Ψx(s̄2, s̄1), Ψy(s̄2, s̄1), Ψx,h(s̄2, s̄1), and Ψy,v(s̄2, s̄1), s̄1 and s̄2, must be in the range between
0 and C unlike those of ψx(s2, s1), ψy(s2, s1), ψx,h(s2, s1), and ψy,v(s2, s1) can be any real number. As the case of the free
motion, νx,h and ψx,h(s2, s1) satisfy νx,h = ψx,h(s + C, s)/2π and νy,v and ψy,v(s2, s1) satisfy νy,v = ψy,v(s + C, s)/2π.
Equations (28) and (32) and Equations (29) and (33) can be combined into the following complex forms:

√

βx,h(s̄)e
−iΨx,h(s̄,s̄h) =

√

βx(s̄)

1− λ2h

[

e−iΨx(s̄,s̄h) − λhe
iΨx(s̄,s̄h)

]

(38)

√

βy,v(s̄)e
−iΨy,v(s̄,s̄v) =

√

βy(s̄)

1− λ2v

[

e−iΨy(s̄,s̄v) − λve
iΨy(s̄,s̄v)

]

. (39)

These equations can be generalized into

√

βx,h(s̄0)e
iΨx,h(s̄,s̄0) =

{

ei[ψx,h(s̄,s̄h)−ψx(s̄,s̄h)] − 2i sin(πδh)e
i[Ψx,h(s̄,s̄h)−Ψx(s̄,s̄h)]Θ(s̄0; s̄, s̄h)

}

√

βx(s̄0)

1− λ2h
eiΨx(s̄,s̄0)

−
{

λhe
i[ψx,h(s̄,s̄h)+ψx(s̄,s̄h)] − 2i sin(πδh)e

i[Ψx,h(s̄,s̄h)+Ψx(s̄,s̄h)]Θ(s̄0; s̄, s̄h)
}

√

βx(s̄0)

1− λ2h
e−iΨx(s̄,s̄0) (40)
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and

√

βy,v(s̄0)e
iΨy,v(s̄,s̄0) =

{

ei[ψy,v(s̄,s̄v)−ψy(s̄,s̄v)] − 2i sin(πδv)e
i[Ψy,v(s̄,s̄v)−Ψy(s̄,s̄v)]Θ(s̄0; s̄, s̄v)

}

√

βy(s̄0)

1− λ2v
eiΨy(s̄,s̄0)

−
{

λve
i[ψy,v(s̄,s̄v)+ψy(s̄,s̄v)] − 2i sin(πδv)e

i[Ψy,v(s̄,s̄v)+Ψy(s̄,s̄v)]Θ(s̄0; s̄, s̄v)
}

√

βy(s̄0)

1− λ2v
e−iΨy(s̄,s̄0) (41)

where s̄0 (0 ≤ s̄0 < C) is an arbitrary location and Θ(s; s2, s1) is a rectangular function defined as

Θ(s; s2, s1) =
1

2
[sgn(s2 − s) + sgn(s− s1)] =











1 (s2 > s > s1)

−1 (s1 > s > s2)

0 (other cases)

. (42)

These two equations are used in Section 3. Equations (20), (21), (22), and (23) indicate that the optical parameters
measured directly from an observation of the driven motion are βx,h(s̄), βy,v(s̄), αx,h(s̄), αy,v(s̄), ψx,h(s̄2, s1), and
ψy,v(s̄2, s1). To determine the optical parameters of the free motion, we need to use Equations (28), (29), (30), (31),
(32), and (33) with these measured βx,h(s̄), βy,v(s̄), αx,h(s̄), αy,v(s̄), ψx,h(s̄2, s1), and ψy,v(s̄2, s1). These apparent
modulations of the optical parameters are due to the sum resonances (assuming the difference resonance is dominant),
whose modes rotate in the opposite direction compared to the modes of the difference resonances. We may see that,
when rewriting Equations (16) and (17) into (20) and (21), the terms of the sum resonances are absorbed into the new
optical parameters. The sum resonances become negligible compared to the difference resonances in the limit δh, δv → 0.
Then, from Equations (28), (29), (30), (31), (32), and (33), βx,h(s̄), βy,v(s̄), αx,h(s̄), αy,v(s̄), ψx,h(s̄2, s̄1) and ψy,v(s̄2, s̄1)
converge to βx(s̄), βy(s̄), αx(s̄), αy(s̄), ψx(s̄2, s̄1), and ψy(s̄2, s̄1). However, it may be hard to achieve this limiting case
in a real ring, particularly in a hadron ring. It has been shown that these modulations of the optical parameters are
equivalent to the case when thin quadrupole fields, which change the tunes by δh and δv, are inserted at the locations of
the AC dipoles [5].

Equations (20), (21), (22), and (23) also indicate that complex representations of the phase spaces suited to the driven
motion are not x̃ = x + i[αx(s̄)x + βx(s̄)x

′] and ỹ = y + i[αy(s̄)y + βy(s̄)y
′] but x̃h = x + i[αx,h(s̄)x + βx,h(s̄)x

′] and
ỹv = y + i[αy,v(s̄)y + βy,v(s̄)y

′]. In these representations, phase space positions of the driven motion are given by

x̃h(n; s̄) = Ax,h
√

βx,h(s̄)e
−2πiνx,hn−iψx,h(s̄,s̄h)−iφh (43)

ỹv(n; s̄) = Ay,v
√

βy,v(s̄)e
−2πiνy,vn−iψy,v(s̄,s̄v)−iφv . (44)

The relations of the complex representations between x̃ and x̃h and between ỹ and ỹv are given by

x̃h =

√

1

1− λ2h

βx,h(s̄)

βx(s̄)

{

e−i[Ψx,h(s̄,s̄h)−Ψx(s̄,s̄h)]x̃+ λhe
−i[Ψx,h(s̄,s̄h)+Ψx(s̄,s̄h)]x̃∗

}

(45)

ỹv =

√

1

1− λ2v

βy,v(s̄)

βy(s̄)

{

e−i[Ψy,v(s̄,s̄v)−Ψy(s̄,s̄v)]ỹ + λve
−i[Ψy,v(s̄,s̄v)+Ψy(s̄,s̄v)]ỹ∗

}

. (46)

For the driven motion, the complex phase space positions constructed with two adjacent BPMs are also x̃h and ỹv instead
of x̃ and ỹ. Similar to Equations (12) and (13), the following equations hold:

x̃h(n; s̄1) =
1

i sin[ψx,h(s̄2, s̄1)]

[

eiψx,h(s̄2,s̄1)x(n; s̄1)−
√

βx,h(s̄1)

βx,h(s̄2)
x(n; s̄2)

]

(47)

ỹv(n; s̄1) =
1

i sin[ψy,v(s̄2, s̄1)]

[

eiψy,v(s̄2,s̄1)y(n; s̄1)−
√

βy,v(s̄1)

βy,v(s̄2)
y(n; s̄2)

]

. (48)

2.3 Coupled Free Betatron Motion

The first order effects of skew quadrupole fields on the betatron motion can be calculated in various ways. As we see in
the following, the skew quadrupole fields behave like AC dipoles on the first order and one way to calculate their effects
is to use this analogy. In this section, we present a solution to calculate CRDT based on this analogy. A similar solution
can be applied when we calculate the effect of the skew quadrupole fields on the driven motion in the next section.
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When a ring has N thin skew quadrupole fields at locations s̄j (j = 1 · · ·N) and their effective strengths are κj , where

κj =
1

(Bρ)

∂Bx(x, y, s̄j)

∂x

∣

∣

∣

∣

x=y=0

× (length of the field) , (49)

from Equations (1) and (2), the equations of motion are

d2x

ds2
+Kx(s̄)x =





N
∑

j=1

∞
∑

m=−∞

κjδ(s− s̄j −mC)



 y (50)

d2y

ds2
+Ky(s̄)y =





N
∑

j=1

∞
∑

m=−∞

κjδ(s− s̄j −mC)



x . (51)

We solve these equations by expanding the solutions according to the order of the skew quadrupole fields:

x(s) = x(0)(s) + x(1)(s) + · · · (52)

y(s) = y(0)(s) + y(1)(s) + · · · , (53)

where the superscripts denote the orders. The leading order solutions, x(0)(s) and y(0)(s), are obviously Equations (4)
and (5). The equations to determine the first order solutions, x(1)(s) and y(1)(s), are given by substituting Equations
(4), (5), (52), and (53) into Equations (50) and (51):

d2x(1)

ds2
+Kx(s̄)x

(1) =





N
∑

j=1

∞
∑

m=−∞

κjδ(s− s̄j −mC)



 y(0)(s)

=

N
∑

j=1

∞
∑

m=−∞

Ayκj
√

βy(s̄j)δ(s− s̄j −mC) cos[2πνym+ ψy(s̄j) + φy] (54)

and

d2y(1)

ds2
+Ky(s̄)y

(1) =





N
∑

j=1

∞
∑

m=−∞

κjδ(s− s̄j −mC)



x(0)(s)

=

N
∑

j=1

∞
∑

m=−∞

Axκj
√

βx(s̄j)δ(s− s̄j −mC) cos[2πνxm+ ψx(s̄j) + φx] . (55)

Comparing these equations to the equations of motion when there are AC dipoles, Equations (14) and (15), we may
see that each skew quadrupole field acts like an AC dipole. Hence, the contribution of the jth skew quadrupole field to
x(1)(s) is given by simply replacing θh, s̄h, νx,h, and φh with [−Ayκj

√

βy(s̄j) ], s̄j , νy, and [ψy(s̄j) + φy] in Equation

(16). Similarly, the contribution of the jth skew quadrupole field to y(1)(s) is given by replacing θv, s̄v, νy,v, and φv with

[−Axκj
√

βx(s̄j) ], s̄j , νx, and [ψx(s̄j) + φx] in Equation (17). The first order solutions, x(1)(s) and y(1)(s), are linear
superpositions of such contributions from each skew quadrupole field. After some algebraic calculations, the first order
solutions in the complex representation are given by

x̃(1)(n; s̄) = 2iAyf−(s̄)
√

βx(s̄)e
−2πiνyn−iψy(s̄)−iφy + 2iAyf+(s̄)

√

βx(s̄)e
2πiνyn+iψy(s̄)+iφy (56)

ỹ(1)(n; s̄) = 2iAxf
∗
−(s̄)

√

βy(s̄)e
−2πiνxn−iψx(s̄)−iφx + 2iAxf+(s̄)

√

βy(s̄)e
2πiνxn+iψx(s̄)+iφx , (57)

where f∓(s̄) is a CRDT defined as

f∓(s̄) =
1

8i sin[π(νx ∓ νy)]

N
∑

j=1

κj
√

βx(s̄j)βy(s̄j)e
−i[Ψx(s̄,s̄j)∓Ψy(s̄,s̄j)] . (58)

This derivation assumes that the effective strengths of the skew quadrupole fields, κj , are adiabatic parameters. In other
words, Equations (56) and (57) are steady state solutions. If the strengths of these skew quadrupole fields are suddenly
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turned from zero to finite values or when a beam is injected to the ring, additional transient modes are also excited.
Similar to the parameters λh and λv for the driven motion in Equations (26) and (27), we define a parameter for the
ratio of magnitudes of the difference and sum resonances:

λc =
sin[π(νx − νy)]

sin[π(νx + νy)]
. (59)

In the following, we assume that fractional parts of the horizontal and vertical tunes are close to each other and |λc| ≪ 1.
The CRDTs at the location of one dual-plane BPM, s̄, are determined from Fourier components of the turn-by-

turn motion observed by this BPM. The Fourier components corresponding to the leading order modes, X (−νx; s̄)
and Y (−νy; s̄), are already given in Equations (10) and (11). From Equations (56) and (57), the Fourier components
corresponding to the first order modes are

X (−νy; s̄) = 2iAyf−(s̄)
√

βx(s̄)e
−iψy(s̄)−iφy (60)

X (νy; s̄) = 2iAyf+(s̄)
√

βx(s̄)e
iψy(s̄)+iφy (61)

Y (−νx; s̄) = 2iAxf
∗
−(s̄)

√

βy(s̄)e
−iψx(s̄)−iφx (62)

Y (νx; s̄) = 2iAxf+(s̄)
√

βy(s̄)e
iψx(s̄)+iφx . (63)

From Equations (10), (11), (60), (61), (62), and (63), f∓(s̄) are given by

f−(s̄) =
1

−2i

√

βx(s̄)

βy(s̄)

Y ∗(−νx; s̄)
X ∗(−νx; s̄)

=
1

2i

√

βy(s̄)

βx(s̄)

X (−νy; s̄)
Y (−νy; s̄)

(64)

f+(s̄) =
1

2i

√

βx(s̄)

βy(s̄)

Y (νx; s̄)

X ∗(−νx; s̄)
=

1

2i

√

βy(s̄)

βx(s̄)

X (νy; s̄)

Y ∗(−νy; s̄)
. (65)

If the horizontal and vertical pick-ups of the considered dual-plane BPM have a calibration error, it affects inversely to
the first and second expressions of f∓(s̄). Hence, to cancel the potential calibration errors, we usually take the square
average of the first and second expressions when calculating amplitude of f∓(s̄) [10]:

|f−(s̄)| =
1

2

√

−Y (−νx; s̄)X (−νy; s̄)
X (−νx; s̄)Y (−νy; s̄)

(66)

|f+(s̄)| =
1

2

√

Y ∗(νx; s̄)X (νy; s̄)

X (−νx; s̄)Y ∗(−νy; s̄)
. (67)

When f∓(s̄) at two BPM locations s̄1 and s̄2 (s̄1 < s̄2) are known, we can get an information of the skew quadrupole
fields located between these two BPMs from the following equation [11]:

ei[ψx(s̄2)∓ψy(s̄2)]f∓(s̄2)− ei[ψx(s̄1)∓ψy(s̄1)]f∓(s̄1) =
∑

s̄1<s̄j<s̄2

1

4
κj
√

βx(s̄j)βy(s̄j)e
i[ψx(s̄j)∓ψy(s̄j)] . (68)

3 Coupled Driven Betatron Motion

In this section, we derive an expression of the coupled driven betatron motion, excited with two AC dipoles under the in-
fluence of skew quadrupole fields. Similar to the case of the uncoupled driven motion in Section 2.2, which is parametrized
with the modulated Courant-Snyder parameters and phase advance, the coupled driven motion is parametrized with mod-
ulated CRDTs. The procedure to calculate the first order effects of the skew quadrupole fields on the driven motion is
almost identical to that on the free motion in Section 2.3. From Equations (14), (15), (50), and (51), equations of motion
when there are horizontal and vertical AC dipoles and skew quadrupole fields are given by

d2x

ds2
+Kx(s̄)x =





N
∑

j=1

∞
∑

m=−∞

κjδ(s− s̄j −mC)



 y −
∞
∑

m=−∞

θhδ(s− s̄h −mC) cos(2πνx,hm+ φh) (69)

d2y

ds2
+Ky(s̄)y =





N
∑

j=1

∞
∑

m=−∞

κjδ(s− s̄j −mC)



x−
∞
∑

m=−∞

θvδ(s− s̄v −mC) cos(2πνy,vm+ φv) . (70)
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As we did in Section 2.3, we solve these equations by expanding the solutions according to the order of the skew quadrupole
fields. The leading order solutions, x(0)(s) and y(0)(s), are already given in Equations (20) and (21). Then, the equations
to determine the first order solutions, x(1)(s) and y(1)(s), are given by

d2x(1)

ds2
+Kx(s̄)x

(1) =





N
∑

j=1

∞
∑

m=−∞

κjδ(s− s̄j −mC)



 y(0)(s)

=
N
∑

j=1

∞
∑

m=−∞

Ay,vκj
√

βy,v(s̄j) δ(s− s̄j −mC) cos[2πνy,vm+ ψy,v(s̄j , s̄v) + φv] (71)

and

d2y(1)

ds2
+Ky(s̄)y

(1) =





N
∑

j=1

∞
∑

m=−∞

κjδ(s− s̄j −mC)



x(0)(s)

=
N
∑

j=1

∞
∑

m=−∞

Ax,hκj
√

βx,h(s̄j) δ(s− s̄j −mC) cos[2πνx,hm+ ψx,h(s̄j , s̄h) + φh] . (72)

These equations can be solved in the same way as we solved Equations (54) and (55) by replacing the corresponding terms
in Equations (16) and (17). After some algebraic calculations, the first order solutions in the complex representations
are given by

x̃(1)(n; s̄) = 2iAy,vf−,v(s̄)
√

βx(s̄)e
−2πiνy,vn−iψy,v(s̄,s̄v)−iφv + 2iAy,vf+,v(s̄)

√

βx(s̄)e
2πiνy,vn+iψy,v(s̄,s̄v)+iφv (73)

ỹ(1)(n; s̄) = 2iAx,hf
∗
−,h(s̄)

√

βy(s̄)e
−2πiνx,hn−iψx,h(s̄,s̄h)−iφh + 2iAx,hf+,h(s̄)

√

βy(s̄)e
2πiνx,hn+iψx,h(s̄,s̄h)+iφh , (74)

where f∓,h(s̄) and f∓,v(s̄) are CRDTs for the driven motion define as

f∓,h(s̄) =
1

8i sin[π(νx,h ∓ νy)]

N
∑

j=1

κj
√

βx,h(s̄j)βy(s̄j)e
−i[Ψx,h(s̄,s̄j)∓Ψy(s̄,s̄j)] (75)

f∓,v(s̄) =
1

8i sin[π(νx ∓ νy,v)]

N
∑

j=1

κj
√

βx(s̄j)βy,v(s̄j)e
−i[Ψx(s̄,s̄j)∓Ψy,v(s̄,s̄j)] . (76)

Compared to the CRDTs for the free motion, f∓(s̄), in Equation (58), the optical parameters in the horizontal plane
are replaced by those for the driven motion in f∓,h(s̄) and the optical parameters in the vertical plane are replaced by
those for the driven motion in f∓,v(s̄). In this way, the coupled driven motion is parametrized with a new set of CRDTs.

If we use Equations (40) and (41) and rewrite
[√

βx,h(s̄j)e
−iΨx,h(s̄,s̄j)

]

in Equation (75) and
[√

βy,v(s̄j)e
±iΨy,v(s̄,s̄j)

]

in
Equation (76), f∓,h(s̄) and f∓,v(s̄) can be expressed with f∓(s̄):

f∓,h(s̄) =
1

√

1− λ2h

sin[π(νx ∓ νy)]

sin[π(νx,h ∓ νy)]

{

e−i[ψx,h(s̄,s̄h)−ψx(s̄,s̄h)]f∓(s̄) + λhe
−i[ψx,h(s̄,s̄h)+ψx(s̄,s̄h)][λ∓1

c f∗±(s̄)]

+ 2i sin(πδh)e
−i[Ψx,h(s̄,s̄h)−Ψx(s̄,s̄h)]f∓(s̄; s̄, s̄h) + 2i sin(πδh)e

−i[Ψx,h(s̄,s̄h)+Ψx(s̄,s̄h)][λ∓1
c f∗±(s̄; s̄, s̄h)]

}

(77)

and

f∓,v(s̄) =
1

√

1− λ2v

sin[π(νx ∓ νy)]

sin[π(νx ∓ νy,v)]

{

e±i[ψy,v(s̄,s̄v)−ψy(s̄,s̄v)]f∓(s̄)− λve
±i[ψy,v(s̄,s̄v)+ψy(s̄,s̄v)][λ∓1

c f±(s̄)]

∓ 2i sin(πδv)e
±i[Ψy,v(s̄,s̄v)−Ψy(s̄,s̄v)]f∓(s̄; s̄, s̄v)± 2i sin(πδv)e

±i[Ψy,v(s̄,s̄v)+Ψy(s̄,s̄v)][λ∓1
c f±(s̄; s̄, s̄v)]

}

, (78)

where f∓(s̄; s̄, s̄h) and f∓(s̄; s̄, s̄v) describe contributions to f∓(s̄) from the skew quadrupole fields located between s̄h
and s̄ and between s̄v and s̄:

f∓(s̄; s̄, s̄ac) =
1

8i sin[π(νx ∓ νy)]

N
∑

j=1

Θ(s̄j ; s̄, s̄ac)κj
√

βx(s̄j)βy(s̄j)e
−i[Ψx(s̄,s̄j)∓Ψy(s̄,s̄j)] (s̄ac = s̄h or s̄v) . (79)
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If we use Equation (68), f∓(s̄; s̄, s̄ac) is given with f∓(s̄) and f∓(s̄ac):

f∓(s̄; s̄, s̄ac) =
eπi(νx∓νy)sgn(s̄−s̄ac)

2i sin[π(νx ∓ νy)]

{

f∓(s̄)− e−i[ψx(s̄,s̄ac)∓ψy(s̄,s̄ac)]f∓(s̄ac)
}

(s̄ac = s̄h or s̄v) . (80)

As we discuss in Section 4, f∓,h(s̄) and f∓,v(s̄) can be determined from an observation of the driven motion. Hence, if
the horizontal and vertical AC dipoles are at the same location in the ring, suppose s̄h = s̄v = s̄ac, Equations (77) and
(78) provide four equations for four known parameters, f∓,h(s̄) and f∓,v(s̄), and four unknown parameters, f∓(s̄) and
f∓(s̄; s̄, s̄ac) (or equivalently f∓(s̄) and f∓(s̄ac)), and it looks that we can algebraically solve these equations for f∓(s̄).
However, this is not the case since these equations are not linearly independent. This indicates that f∓(s̄) at one BPM
location s̄ cannot be determined only with f∓,h(s̄) and f∓,v(s̄) at the same location. As shown in Section 4, we also need
f∓,h(s̄h) and f∓,v(s̄v) to determine f∓(s̄). Similar to Equation (68), the following equations hold for f∓,h(s̄) and f∓,v(s̄)
at two BPM locations s̄1 and s̄2:

ei[ψx,h(s̄2)∓ψy(s̄2)]f∓,h(s̄2)− ei[ψx,h(s̄1)∓ψy(s̄1)]f∓,h(s̄1) =
∑

s̄1<s̄j<s̄2

1

4
κj
√

βx,h(s̄j)βy(s̄j)e
i[ψx,h(s̄j)∓ψy(s̄j)] (81)

ei[ψx(s̄2)∓ψy,v(s̄2)]f∓,v(s̄2)− ei[ψx(s̄1)∓ψy,v(s̄1)]f∓,v(s̄1) =
∑

s̄1<s̄j<s̄2

1

4
κj
√

βx(s̄j)βy,v(s̄j)e
i[ψx(s̄j)∓ψy,v(s̄j)] . (82)

We note that the solutions in Equations (73) and (74) are in the complex phase space representations based on the
parameters of the free motion, x̃ = x + i[αx(s̄)x + βx(s̄)x

′] and ỹ = y + i[αy(s̄)y + βy(s̄)y
′]. Whereas, as discussed in

Section 2.2, the complex phase space positions reconstructed from two adjacent BPMs for the driven motion are those
based on the parameters of the driven motion, x̃h = x+ i[αx,h(s̄)x+ βx,h(s̄)x

′] and ỹv = y + i[αy,v(s̄)y + βy,v(s̄)y
′]. The

transformations from x̃ and ỹ to x̃h and ỹv are given in Equations (45) and (45):

x̃
(1)
h (n; s̄) = 2iAy,vf−,v,h(s̄)

√

βx,h(s̄)e
−2πiνy,vn−iψy,v(s̄,s̄v)−iφv + 2iAy,vf+,v,h(s̄)

√

βx,h(s̄)e
2πiνy,vn+iψy,v(s̄,s̄v)+iφv (83)

ỹ(1)v (n; s̄) = 2iAx,hf
∗
−,h,v(s̄)

√

βy,v(s̄)e
−2πiνx,hn−iψx,h(s̄,s̄h)−iφh + 2iAx,hf+,h,v(s̄)

√

βy,v(s̄)e
2πiνx,hn+iψx,h(s̄,s̄h)+iφh , (84)

where f∓,h,v(s̄) and f∓,v,h(s̄) are CRDTs of the driven motion modified for the complex phase space representations for
the driven motion:

f∓,h,v(s̄) =
1

√

1− λ2v

{

e±i[Ψy,v(s̄,s̄v)−Ψy(s̄,s̄v)]f∓,h(s̄)− λve
±i[Ψy,v(s̄,s̄v)+Ψy(s̄,s̄v)]f±,h(s̄)

}

(85)

f∓,v,h(s̄) =
1

√

1− λ2h

{

e−i[Ψx,h(s̄,s̄h)−Ψx(s̄,s̄h)]f∓,v(s̄)− λhe
−i[Ψx,h(s̄,s̄h)+Ψx(s̄,s̄h)]f∗±,v(s̄)

}

. (86)

The complex phase space positions of Equations (83) and (84) and, hence, f∓,h,v(s̄) and f∓,v,h(s̄) are what we observe
with BPMs for the coupled driven motion.

4 From CRDTs of Driven Motion to CRDTs of Free Motion

In this section, we present an analytical procedure to determine the CRDTs of the free motion, f∓(s̄), from measured
turn-by-turn complex phase space positions of the driven motion, x̃h(n; s̄) and ỹv(n; s̄). Like the case of the free coupled
motion, the modified CRDTs of the driven motion, f∓,h,v(s̄) and f∓,v,h(s̄), are determined from the Fourier components
of x̃h(n; s̄) and ỹv(n; s̄). From Equations (43) and (44), the Fourier components corresponding to the leading order modes
are

Xh(−νx,h; s̄) = Ax,h
√

βx,h(s̄)e
−iψx,h(s̄,s̄h)−iφh (87)

Yv(−νy,v; s̄) = Ay,v
√

βy,v(s̄)e
−iψy,v(s̄,s̄v)−iφv . (88)

From Equations (83) and (84), the Fourier components corresponding to the first order modes are

Xh(−νy,v; s̄) = 2iAy,vf−,v,h(s̄)
√

βx,h(s̄)e
−iψy,v(s̄,s̄v)−iφv (89)

Xh(νy,v; s̄) = 2iAy,vf+,v,h(s̄)
√

βx,h(s̄)e
iψy,v(s̄,s̄v)+iφv (90)

Yv(−νx,h; s̄) = 2iAx,hf
∗
−,h,v(s̄)

√

βy,v(s̄)e
−iψx,h(s̄,s̄h)−iφh (91)

Yv(νx,h; s̄) = 2iAx,hf+,h,v(s̄)
√

βy,v(s̄)e
iψx,h(s̄,s̄h)+iφh . (92)
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With these six components, f∓,h,v(s̄) and f∓,v,h(s̄) are determined by

f−,h,v(s̄) =
1

−2i

√

βx,h(s̄)

βy,v(s̄)

Y ∗
v (−νx,h; s̄)

X ∗
h (−νx,h; s̄)

(93)

f−,v,h(s̄) =
1

2i

√

βy,v(s̄)

βx,h(s̄)

Xh(−νy,v; s̄)
Yv(−νy,v; s̄)

(94)

f+,h,v(s̄) =
1

2i

√

βx,h(s̄)

βy,v(s̄)

Yv(νx,h; s̄)

X ∗
h (−νx,h; s̄)

(95)

f+,v,h(s̄) =
1

2i

√

βy,v(s̄)

βx,h(s̄)

Xh(νy,v; s̄)

Y ∗
v (−νy,v; s̄)

. (96)

Once f∓,h,v(s̄) and f∓,v,h(s̄) are known, the CRDTs of the driven motion, f∓,h(s̄) and f∓,v(s̄), are determined by solving
Equations (85) and (86) for f∓,h(s̄) and f∓,v(s̄):

f∓,h(s̄) =
1

√

1− λ2v

{

e∓i[Ψy,v(s̄,s̄v)−Ψy(s̄,s̄v)]f∓,h,v(s̄) + λve
±i[Ψy,v(s̄,s̄v)+Ψy(s̄,s̄v)]f±,h,v(s̄)

}

(97)

f∓,v(s̄) =
1

√

1− λ2h

{

ei[Ψx,h(s̄,s̄h)−Ψx(s̄,s̄h)]f∓,v,h(s̄) + λhe
−i[Ψx,h(s̄,s̄h)+Ψx(s̄,s̄h)]f∗±,v,h(s̄)

}

. (98)

We can determine the CRDTs of the free motion, f∓(s̄), from those of the driven motion, f∓,h(s̄) and f∓,v(s̄), in the
following way. If we exchange all the optical parameters of the horizontal plane for the free motion, βx(s̄), ψx(s̄2, s̄1),
Ψx(s̄2, s̄1), and νx, with those for the driven motion, βx,h(s̄), ψx,h(s̄2, s̄1), Ψx,h(s̄2, s̄1), and νx,h, in Equation (77), we get

f∓(s̄) =
1

√

1− λ2h

sin[π(νx,h ∓ νy)]

sin[π(νx ∓ νy)]

{

ei[ψx,h(s̄,s̄h)−ψx(s̄,s̄h)]f∓,h(s̄)− λhe
−i[ψx,h(s̄,s̄h)+ψx(s̄,s̄h)][λ∓1

c,hf
∗
±,h(s̄)]

− 2i sin(πδh)e
i[Ψx,h(s̄,s̄h)−Ψx(s̄,s̄h)]f∓,h(s̄; s̄, s̄h)− 2i sin(πδh)e

−i[Ψx,h(s̄,s̄h)+Ψx(s̄,s̄h)][λ∓1
c,hf

∗
±,h(s̄; s̄, s̄h)]

}

. (99)

Similarly, if we exchange all the optical parameters of the vertical plane for the free motion, βy(s̄), ψy(s̄2, s̄1), Ψy(s̄2, s̄1),
and νy, with those for the driven motion, βy,v(s̄), ψy,v(s̄2, s̄1), Ψy,v(s̄2, s̄1), and νy,v, in Equation (78), we get

f∓(s̄) =
1

√

1− λ2v

sin[π(νx ∓ νy,v)]

sin[π(νx ∓ νy)]

{

e∓i[ψy,v(s̄,s̄v)−ψy(s̄,s̄v)]f∓,v(s̄) + λve
±i[ψy,v(s̄,s̄v)+ψy(s̄,s̄v)][λ∓1

c,vf±,v(s̄)]

± 2i sin(πδv)e
∓i[Ψy,v(s̄,s̄v)−Ψy(s̄,s̄v)]f∓,v(s̄; s̄, s̄v)∓ 2i sin(πδv)e

±i[Ψy,v(s̄,s̄v)+Ψy(s̄,s̄v)][λ∓1
c,vf±,v(s̄; s̄, s̄v)]

}

. (100)

In these equations, λc,h and λc,v are parameters similar to λc, λh, and λv:

λc,h =
sin[π(νx,h − νy)]

sin[π(νx,h + νy)]
(101)

λc,v =
sin[π(νx − νy,v)]

sin[π(νx + νy,v)]
(102)

and, similar to f∓(s̄; s̄, s̄ac) in Equation (79), f∓,h(s̄; s̄, s̄h) and f∓,v(s̄; s̄, s̄v) describe contributions to f∓,h(s̄) and f∓,v(s̄)
from the skew quadrupole fields located between s̄h and s̄ and between s̄v and s̄:

f∓,h(s̄; s̄, s̄h) =
1

8i sin[π(νx,h ∓ νy)]

N
∑

j=1

Θ(s̄j ; s̄, s̄h)κj
√

βx,h(s̄j)βy(s̄j)e
−i[Ψx,h(s̄,s̄j)∓Ψy(s̄,s̄j)] (103)

f∓,v(s̄; s̄, s̄v) =
1

8i sin[π(νx ∓ νy,v)]

N
∑

j=1

Θ(s̄j ; s̄, s̄v)κj
√

βx(s̄j)βy,v(s̄j)e
−i[Ψx(s̄,s̄j)∓Ψy,v(s̄,s̄j)] . (104)
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By using Equations (81) and (82), f∓,h(s̄; s̄, s̄h) and f∓,v(s̄; s̄, s̄v) can be expressed with f∓,h(s̄), f∓,v(s̄), f∓,h(s̄h), and
f∓,v(s̄v):

f∓,h(s̄; s̄, s̄h) =
eπi(νx,h∓νy)sgn(s̄−s̄h)

2i sin[π(νx,h ∓ νy)]

{

f∓,h(s̄)− e−i[ψx,h(s̄,s̄h)∓ψy(s̄,s̄h)]f∓,h(s̄h)
}

(105)

f∓,v(s̄; s̄, s̄v) =
eπi(νx∓νy,v)sgn(s̄−s̄v)

2i sin[π(νx ∓ νy,v)]

{

f∓,v(s̄)− e−i[ψx(s̄,s̄v)∓ψy,v(s̄,s̄v)]f∓,v(s̄v)
}

. (106)

If there are BPMs close to the locations of the horizontal and vertical AC dipoles, s̄h and s̄v, we can measure f∓,h(s̄h) and
f∓,v(s̄v) and determine f∓,h(s̄; s̄, s̄h) and f∓,v(s̄; s̄, s̄v). In this way, the CRDTs of the free motion, f∓(s̄), are determined
by substituting the measured f∓,h(s̄), f∓,v(s̄), f∓,h(s̄h), and f∓,v(s̄v) into Equations (99), (100), (105), and (106). We
may see that, from Equations (93), (94), (95), and (96), f∓(s̄) determined from Equations (99) and (100) are inversely
affected by calibration errors of the horizontal and vertical pick-ups of the considered dual-plane BPM. Therefore, when
calculating the amplitude of f∓(s̄), we should take the square average as we did in Equations (66) and (67).

5 Errors When Approximating f∓(s̄) with f∓,h(s̄) or f∓,v(s̄)

In the previous section, we presented the procedure to determine the CRDTs of the free motion from the CRDTs of
the driven motion. However, as we may see in Equations (77) and (78), aside from the scaling factors {sin[π(νx ∓
νy)]/ sin[π(νx,h∓ νy)]} and {sin[π(νx∓ νy)]/ sin[π(νx∓ νy,v)]}, the differences between the CRDTs of the free and driven
motions are only on the order of λh or λv. If the required accuracy of a measurement is not very high, such small
differences may be simply ignored. In this section, we estimate the errors if we approximate f∓(s̄) with f∓,h(s̄) or f∓,v(s̄)
by simply ignoring the differences between f∓(s̄) and f∓,h(s̄) and between f∓(s̄) and f∓,v(s̄) after removing obvious
differences.

5.1 When |f+(s̄)| ≃ |λcf−(s̄)|
We consider a case when the amplitudes of the difference and sum CRDTs satisfy |f+(s̄)| ≃ |λcf−(s̄)|. We also assume
that there are randomly distributed many skew quadrupole fields in the ring. In Equations (77) and (78), the overall

scaling factors, {1/
√
1− λ2h sin[π(νx ∓ νy)]/ sin[π(νx,h ∓ νy)]} and {1/

√
1− λ2h sin[π(νx ∓ νy)]/ sin[π(νx ∓ νy,v)]}, and the

overall phase factors, e−i[ψx,h(s̄,s̄h)−ψx(s̄,s̄h)] and e±i[ψy,v(s̄,s̄v)−ψy(s̄,s̄v)], are known parameters and they should not be
included in errors. We introduce new parameters, f̂∓,h(s̄) and f̂∓,v(s̄), from which these factors are removed:

f̂∓,h(s̄) =
√

1− λ2h
sin[π(νx,h ∓ νy)]

sin[π(νx ∓ νy)]
ei[ψx,h(s̄,s̄h)−ψx(s̄,s̄h)]f∓,h(s̄)

= f∓(s̄) + λhe
−2iψx(s̄,s̄h)[λ∓1

c f∗±(s̄)] + 2πiδhf∓(s̄; s̄, s̄h) + 2πiδhe
−2iΨx(s̄,s̄h)[λ∓1

c f∗±(s̄; s̄, s̄h)] +O(λ2h) (107)

and

f̂∓,v(s̄) =
√

1− λ2v
sin[π(νx ∓ νy,v)]

sin[π(νx ∓ νy)]
e∓i[ψy,v(s̄,s̄v)−ψy(s̄,s̄v)]f∓,v(s̄)

= f∓(s̄)− λve
±2iψy(s̄,s̄v)[λ∓1

c f±(s̄)]∓ 2πiδvf∓(s̄; s̄, s̄v)± 2πiδve
±2iΨy(s̄,s̄v)[λ∓1

c f±(s̄; s̄, s̄v)] +O(λ2v) . (108)

The difference between f∓(s̄) and f̂∓,h(s̄) or between f∓(s̄) and f̂∓,v(s̄) gives a systematic error when we do not use the
solution of Section 4. When a complex number z changes by a small amount δz, changes in the amplitude and phase are
given by

|z + δz| − |z|
|z| =

Re[z∗δz]

|z|2 +O(|δz|2) (109)

arg(z + δz)− arg(z) =
Im[z∗δz]

|z|2 +O(|δz|2) . (110)
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Applying these two formulae to Equations (107) and (108), the amplitudes of f̂∓,h(s̄) and f̂∓,v(s̄) satisfy

|f̂∓,h(s̄)| − |f∓(s̄)|
|f∓(s̄)|

= λh
|λ∓1
c f±(s̄)|
|f∓(s̄)|

cos
{

arg[f∓(s̄)] + arg[f±(s̄)] + 2ψx(s̄, s̄h)
}

+ 2πδh
|f∓(s̄; s̄, s̄h)|

|f∓(s̄)|
sin

{

arg[f∓(s̄)]− arg[f∓(s̄; s̄, s̄h)]
}

+ 2πδh
|λ∓1
c f±(s̄; s̄, s̄h)|

|f∓(s̄)|
sin

{

arg[f∓(s̄)] + arg[f±(s̄; s̄, s̄h)] + 2Ψx(s̄, s̄h)
}

+O(λ2h) (111)

and

|f̂∓,v(s̄)| − |f∓(s̄)|
|f∓(s̄)|

=− λv
|λ∓1
c f±(s̄)|
|f∓(s̄)|

cos
{

arg[f∓(s̄)]− arg[f±(s̄)]∓ 2ψy(s̄, s̄v)
}

∓ 2πδv
|f∓(s̄; s̄, s̄v)|

|f∓(s̄)|
sin

{

arg[f∓(s̄)]− arg[f∓(s̄; s̄, s̄v)]
}

± 2πδv
|λ∓1
c f±(s̄; s̄, s̄v)|

|f∓(s̄)|
sin

{

arg[f∓(s̄)]− arg[f±(s̄; s̄, s̄v)]∓ 2Ψy(s̄, s̄v)
}

+O(λ2v) (112)

and the phases of f̂∓,h(s̄) and f̂∓,v(s̄) satisfy

arg
[

f̂∓,h(s̄)
]

− arg
[

f∓(s̄)
]

=− λh
|λ∓1
c f±(s̄)|
|f∓(s̄)|

sin
{

arg[f∓(s̄)] + arg[f±(s̄)] + 2ψx(s̄, s̄h)
}

+ 2πδh
|f∓(s̄; s̄, s̄h)|

|f∓(s̄)|
cos

{

arg[f∓(s̄)]− arg[f∓(s̄; s̄, s̄h)]
}

+ 2πδh
|λ∓1
c f±(s̄; s̄, s̄h)|

|f∓(s̄)|
cos

{

arg[f∓(s̄)] + arg[f±(s̄; s̄, s̄h)] + 2Ψx(s̄, s̄h)
}

+O(λ2h) (113)

and

arg
[

f̂∓,v(s̄)
]

− arg
[

f∓(s̄)
]

= λv
|λ∓1
c f±(s̄)|
|f∓(s̄)|

sin
{

arg[f∓(s̄)]− arg[f±(s̄)]∓ 2ψy(s̄, s̄v)
}

∓ 2πδv
|f∓(s̄; s̄, s̄v)|

|f∓(s̄)|
cos

{

arg[f∓(s̄)]− arg[f∓(s̄; s̄, s̄v)]
}

± 2πδv
|λ∓1
c f±(s̄; s̄, s̄v)|

|f∓(s̄)|
cos

{

arg[f∓(s̄)]− arg[f±(s̄; s̄, s̄v)]∓ 2Ψy(s̄, s̄v)
}

+O(λ2v) . (114)

We note that there are six difference phases in these equations and they are all incoherent1. From the initial assumptions,
the following approximation holds:

〈 |λ∓1
c f±(s̄)|
|f∓(s̄)|

〉

rms

≃
〈 |f∓(s̄; s̄, s̄h)|

|f∓(s̄)|

〉

rms

≃
〈 |λ∓1

c f±(s̄; s̄, s̄h)|
|f∓(s̄)|

〉

rms

≃
〈 |f∓(s̄; s̄, s̄v)|

|f∓(s̄)|

〉

rms

≃
〈 |λ∓1

c f±(s̄; s̄, s̄v)|
|f∓(s̄)|

〉

rms

≃ 1 . (115)

Then, under these assumptions, the systematic errors in amplitude and phase are estimated as

〈 |f̂∓,h(s̄)| − |f∓(s̄)|
|f∓(s̄)|

〉

rms

≃
〈

arg
[

f̂∓,h(s̄)
]

− arg
[

f̂∓(s̄)
]〉

rms
≃ 2πδh

√

1 +
1

8 sin(2πνx)
(116)

〈 |f̂∓,v(s̄)| − |f∓(s̄)|
|f∓(s̄)|

〉

rms

≃
〈

arg
[

f̂∓,v(s̄)
]

− arg
[

f̂∓(s̄)
]〉

rms
≃ 2πδv

√

1 +
1

8 sin(2πνy)
. (117)

1An exception is that the phases in the second terms of Equations (111), (112), (113) and (114), {arg[f∓(s̄)] − arg[f∓(s̄; s̄, s̄h)]} and
{arg[f∓(s̄)] − arg[f∓(s̄; s̄, s̄v)]}, become identical when the horizontal and vertical AC dipoles are at the same location. In this condition, if

we choose δh = δv and take the mean of f̂−,h(s̄) and f̂−,v(s̄) to estimate f−(s̄), the contributions from these terms cancel out each and the
systematic error can be reduced. Similarly, if we choose δh = −δv , the systematic error in f+(s̄) can be reduced.
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5.2 When |f+(s̄)| ≃ |f−(s̄)|
We make a comment on a case when the difference and sum resonances have similar strengths, |f+(s̄)| ≃ |f−(s̄)|. In such

a case, from Equations (77) and (78), the leading order terms of f̂−,h(s̄) and f̂−,v(s̄) are given by

f̂−,h(s̄) = f−(s̄) +
λh
λc
e−2iψx(s̄,s̄h)f∗+(s̄) +

2πiδh
λc

e−2iΨx(s̄,s̄h)f∗+(s̄; s̄, s̄h) +O(λh) (118)

f̂−,v(s̄) = f−(s̄)−
λv
λc
e2iψy(s̄,s̄v)f+(s̄) +

2πiδv
λc

e2iΨy(s̄,s̄v)f+(s̄; s̄, s̄v) +O(λv) (119)

Because λh/λc, πδh/λc, λv/λc, and πδv/λc are on the order one, f̂−,h(s̄) and f̂−,v(s̄) have contributions from f+(s̄),

f+(s̄; s̄, s̄h), and f+(s̄; s̄, s̄v) on the leading order. Therefore, in this condition, estimating f−(s̄) with f̂−,h(s̄) or f̂−,v(s̄)

is not very accurate. Again, from Equations (77) and (78), up to the first order of λh and λv, f̂+,h(s̄) and f̂+,v(s̄) are
given by

f̂+,h(s̄) = f+(s̄) + 2πiδhf+(s̄; s̄, s̄h) +O(λ2h) (120)

f̂+,v(s̄) = f+(s̄) + 2πiδvf+(s̄; s̄, s̄v) +O(λ2v) . (121)

Hence, the approximation for f+(s̄) is still on the order of λh or λv.

5.3 f∓,h(s̄) and f∓,v(s̄) vs. f∓,h,v(s̄) and f∓,v,h(s̄)

In Section 3, we saw that the parameters directly determined from the spectra of the driven motion are the modified
CRDT of the driven motion, f∓,h,v(s̄) and f∓,v,h(s̄), instead of the CRDT of the driven motion, f∓,h(s̄) and f∓,v(s̄). We
can calculate f∓,h(s̄) and f∓,v(s̄) from f∓,h,v(s̄) and f∓,v,h(s̄) or vice versa with Equations (85), (86), (97), and (98).
We make a comment to approximate f∓(s̄) with f∓,h,v(s̄) or f∓,v,h(s̄). As Section 5.1, we consider |f+(s̄)| ≃ |λcf−(s̄)|.
From Equations (85) and (86), up to the first order of λc, λh, and λv, f−,h,v(s̄) and f+,v,h(s̄) are given by

f−,h,v(s̄) = ei[Ψy,v(s̄,s̄v)−Ψy(s̄,s̄v)]f−,h(s̄) +O(λ2v, λcλv) (122)

f−,v,h(s̄) = e−i[Ψx,h(s̄,s̄h)−Ψx(s̄,s̄h)]f−,v(s̄) +O(λ2v, λcλv) . (123)

The differences between f−,h,v(s̄) and f−,h(s̄) and between f+,h,v(s̄) and f+,h(s̄) are only in the phases and on the orders
of λv and λh. Hence, when we approximate f−(s̄) with f−,h,v(s̄) or f−,v,h(s̄), we only have additional phase errors on
the order λh or λv, compared to when approximating with f−,h(s̄) or f−,v(s̄). Again from Equations (85) and (86), the
leading order terms of f+,h,v(s̄) and f+,v,h(s̄) are given by

f+,h,v(s̄) = f+,h(s̄)−
λv
λc
e−2iΨy(s̄,s̄v)[λcf−,h(s̄)] +O(λv) (124)

f+,v,h(s̄) = f+,v(s̄)−
λh
λc
e−2iΨx(s̄,s̄h)[λcf

∗
−,v(s̄)] +O(λh) . (125)

Because λv/λc and λh/λc are on the order of one, f+,h,v(s̄) and f+,v,h(s̄) have contributions from f−,h(s̄) and f−,v(s̄)
on the leading order. Hence, the approximation of the sum CRDT f+(s̄) with f+,h,v(s̄) or f+,v,h(s̄) may not be very
accurate.

6 Conclusions

This note derived an expression of the coupled driven betatron motion, showed that it is parametrized with a new set
of CRDTs, similar to the case of the uncoupled driven motion, and presented how to extrapolate the CRDTs of the free
motion from those of the driven motion, which are directly determined from spectra of the driven motion. Please note that
the presented derivation and parametrization of the coupled driven motion with a new set of CRDTs can be extended in
a straight forward manner to the driven motion under influences of any perturbative fields characterized by any resonance
driving terms. We also gave estimates of errors when we approximate the CRDTs of the free motion with those of the
driven motion. Once we removed the trivial differences in amplitude and phase, accuracy of the approximation is on the
order of 2πδh or 2πδv in typical conditions, where magnitude of the sum resonance is smaller than that of the difference
resonance by the order of λc. This note only presented the analytic solution and estimate of the problem. The obvious
next step is to perform numerical simulations and develop an algorithm for real data.
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