80 research outputs found

    Serum levels of anti-PspA and anti-PspC IgG decrease with age and do not correlate with susceptibility to experimental human pneumococcal colonization.

    Get PDF
    Older adults are at increased risk of pneumococcal disease. This work aims to evaluate whether there is any decrease in serum IgG against variants of the antigens Pneumococcal surface protein A (PspA) and Pneumococcal surface protein C (PspC) in healthy adults with increasing age. Levels of IgG against PspA and PspC variants were determined by ELISA in serum samples comparing volunteers 18-30 years of age with volunteers who were 50-70+ before and after an experimental pneumococcal colonization challenge. The serotype 6B strain used in the challenge belongs to a minor group of pneumococcal isolates expressing two PspC variants. There was a decrease in levels of IgG with increasing age for the most common PspA variants and for all PspC variants analyzed. No correlation was found between basal levels of IgG against these antigens and protection against colonization. There was an increase in levels of IgG against PspA variants that are more cross-reactive with the variant expressed by the challenge strain post challenge in younger individuals who became colonized. Since the challenge strain used in our study expresses two different PspC variants, an increase in serum IgG against all PspC variants tested was observed in younger individuals who became colonized. For some of the antigen variants tested, a decrease in serum IgG was observed in young volunteers who were challenged but did not become colonized. Serum IgG antibodies against PspA and PspC variants thus decrease with age in healthy adults, but there is no correlation between levels of IgG against these antigens and protection against human experimental colonization. Though no correlation between naturally induced serum IgG antibodies against PspA and PspC and protection against colonization was observed, these results do not rule out the protective potential of these antigens as vaccines against pneumococcal infections

    Combination of Pneumococcal Surface Protein A (PspA) with Whole Cell Pertussis Vaccine Increases Protection Against Pneumococcal Challenge in Mice

    Get PDF
    Streptococcus pneumoniae is the leading cause of respiratory acute infections around the world. In Latin America, approximately 20,000 children under 5 years of age die of pneumococcal diseases annually. Pneumococcal surface protein A (PspA) is among the best-characterized pneumococcal antigens that confer protection in animal models of pneumococcal infections and, as such, is a good alternative for the currently available conjugated vaccines. Efficient immune responses directed to PspA in animal models have already been described. Nevertheless, few low cost adjuvants for a subunit pneumococcal vaccine have been proposed to date. Here, we have tested the adjuvant properties of the whole cell Bordetella pertussis vaccine (wP) that is currently part of the DTP (diphtheria-tetanus-pertussis) vaccine administrated to children in several countries, as an adjuvant to PspA. Nasal immunization of BALB/c mice with a combination of PspA5 and wP or wPlow – a new generation vaccine that contains low levels of B. pertussis LPS – conferred protection against a respiratory lethal challenge with S. pneumoniae. Both PspA5-wP and PspA5-wPlow vaccines induced high levels of systemic and mucosal antibodies against PspA5, with similar profile, indicating no essential requirement for B. pertussis LPS in the adjuvant properties of wP. Accordingly, nasal immunization of C3H/HeJ mice with PspA5-wP conferred protection against the pneumococcal challenge, thus ruling out a role for TLR4 responses in the adjuvant activity and the protection mechanisms triggered by the vaccines. The high levels of anti-PspA5 antibodies correlated with increased cross-reactivity against PspAs from different clades and also reflected in cross-protection. In addition, passive immunization experiments indicated that antibodies played an important role in protection in this model. Finally, subcutaneous immunization with a combination of PspA5 with DTPlow protected mice against challenge with two different pneumococcal strains, opening the possibility for the development of a combined infant vaccine composed of DTP and PspA

    Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection

    Get PDF
    Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-Ο‰-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles-NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2

    The Ocular Conjunctiva as a Mucosal Immunization Route: A Profile of the Immune Response to the Model Antigen Tetanus Toxoid

    Get PDF
    Background: In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods: BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 x LD50) of tetanus toxin. Results: The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFN gamma and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p lt 0.05). Conclusion: Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively

    Effect of Seven-Valent Pneumococcal Conjugate Vaccine on Staphylococcus aureus Colonisation in a Randomised Controlled Trial

    Get PDF
    Background: Heptavalent pneumococcal conjugate vaccine (PCV7) shifts nasopharyngeal colonisation with vaccine serotype pneumococci towards nonvaccine serotypes. Because of the reported negative association of vaccine serotype pneumococci and Staphylococcus aureus in the nasopharynx, we explored the effect of PCV7 on nasopharyngeal colonisation with S. aureus in children and parents. Methodology/Principal Findings: This study was part of a randomised controlled trial on the effect of PCV7 on pneumococcal carriage, enrolling healthy newborns who were randomly assigned (1: 1: 1) to receive PCV7 (1) at 2 and 4 months of age (2) at 2, 4 and 11 months or (3) no PCV7 (controls). Nasopharyngeal colonisation of S. aureus was a planned secondary outcome. Nasopharyngeal swabs were obtained from all children over a 2-year period with 6-months interval and from one parent at the child's age of 12 and 24 months and cultured for Streptococcus pneumoniae and S. aureus. Between July 2005 and February 2006, 1005 children were enrolled and received either 2-doses of PCV7 (n = 336), 2+1-doses (336) or no dose (n = 333) before PCV7 implementation in the Dutch national immunization program. S. aureus colonisation had doubled in children in the 2+1-dose group at 12 months of age compared with unvaccinated controls (10.1% versus 5.0%; p = 0.019). A negative association for co-colonisation of S. pneumoniae and S. aureus was observed for both vaccine serotype (adjusted odds ratio (aOR) 0.53, 95% confidence interval (CI) 0.38-0.74) and nonvaccine serotype pneumococci (aOR 0.67, 95% CI 0.52-0.88). Conclusions/Significance: PCV7 induces a temporary increase in S. aureus colonisation in children around 12 months of age after a 2+1-dose PCV7 schedule. The potential clinical consequences are unknown and monitoring is warranted

    Identification of Candidate Susceptibility and Resistance Genes of Mice Infected with Streptococcus suis Type 2

    Get PDF
    Streptococcus suis type 2 (SS2) is an important swine pathogen and zoonosis agent. A/J mice are significantly more susceptible than C57BL/6 (B6) mice to SS2 infection, but the genetic basis is largely unknown. Here, alterations in gene expression in SS2 (strain HA9801)-infected mice were identified using Illumina mouse BeadChips. Microarray analysis revealed 3,692 genes differentially expressed in peritoneal macrophages between A/J and B6 mice due to SS2 infection. Between SS2-infected A/J and control A/J mice, 2646 genes were differentially expressed (1469 upregulated; 1177 downregulated). Between SS2-infected B6 and control B6 mice, 1449 genes were differentially expressed (778 upregulated; 671 downregulated). These genes were analyzed for significant Gene Ontology (GO) categories and signaling pathways using the Kyoto Encylopedia of Genes and Genomes (KEGG) database to generate a signaling network. Upregulated genes in A/J and B6 mice were related to response to bacteria, immune response, positive regulation of B cell receptor signaling pathway, type I interferon biosynthesis, defense and inflammatory responses. Additionally, upregulated genes in SS2-infected B6 mice were involved in antigen processing and presentation of exogenous peptides, peptide antigen stabilization, lymphocyte differentiation regulation, positive regulation of monocyte differentiation, antigen receptor-mediated signaling pathway and positive regulation of phagocytosis. Downregulated genes in SS2-infected B6 mice played roles in glycolysis, carbohydrate metabolic process, amino acid metabolism, behavior and muscle regulation. Microarray results were verified by quantitative real-time PCR (qRT-PCR) of 14 representative deregulated genes. Four genes differentially expressed between SS2-infected A/J and B6 mice, toll-like receptor 2 (Tlr2), tumor necrosis factor (Tnf), matrix metalloproteinase 9 (Mmp9) and pentraxin 3 (Ptx3), were previously implicated in the response to S. suis infection. This study identified candidate genes that may influence susceptibility or resistance to SS2 infection in A/J and B6 mice, providing further validation of these models and contributing to understanding of S. suis pathogenic mechanisms

    Long-Term Effects of Pneumococcal Conjugate Vaccine on Nasopharyngeal Carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis

    Get PDF
    BACKGROUND: Shifts in pneumococcal serotypes following introduction of 7-valent pneumococcal conjugate vaccine (PCV-7) may alter the presence of other bacterial pathogens co-inhabiting the same nasopharyngeal niche. METHODOLOGY/PRINCIPAL FINDINGS: Nasopharyngeal prevalence rates of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis were investigated before, 3 and 4.5 years after introduction of PCV-7 in the national immunisation program in children at 11 and 24 months of age, and parents of 24-month-old children (nβ‰ˆ330/group) using conventional culture methods. Despite a virtual disappearance of PCV-7 serotypes over time, similar overall pneumococcal rates were observed in all age groups, except for a significant reduction in the 11-month-old group (adjusted Odds Ratio after 4.5 years 0.48, 95% Confidence Interval 0.34-0.67). Before, 3 and 4.5 years after PCV-7 implementation, prevalence rates of S. aureus were 5%, 9% and 14% at 11 months of age (3.59, 1.90-6.79) and 20%, 32% and 34% in parents (1.96, 1.36-2.83), but remained similar at 24 months of age, respectively. Prevalence rates of H. influenzae were 46%, 65% and 65% at 11 months (2.22, 1.58-3.13), 52%, 73% and 76% at 24 months of age (2.68, 1.88-3.82) and 23%, 30% and 40% in parents (2.26, 1.58-3.33), respectively. No consistent changes in M. catarrhalis carriage rates were observed over time. CONCLUSIONS/SIGNIFICANCE: In addition to large shifts in pneumococcal serotypes, persistently higher nasopharyngeal prevalence rates of S. aureus and H. influenzae were observed among young children and their parents after PCV-7 implementation. These findings may have implications for disease incidence and antibiotic treatment in the post-PCV era

    CRISPR Inhibition of Prophage Acquisition in Streptococcus pyogenes

    Get PDF
    Streptococcus pyogenes, one of the major human pathogens, is a unique species since it has acquired diverse strain-specific virulence properties mainly through the acquisition of streptococcal prophages. In addition, S. pyogenes possesses clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems that can restrict horizontal gene transfer (HGT) including phage insertion. Therefore, it was of interest to examine the relationship between CRISPR and acquisition of prophages in S. pyogenes. Although two distinct CRISPR loci were found in S. pyogenes, some strains lacked CRISPR and these strains possess significantly more prophages than CRISPR harboring strains. We also found that the number of spacers of S. pyogenes CRISPR was less than for other streptococci. The demonstrated spacer contents, however, suggested that the CRISPR appear to limit phage insertions. In addition, we found a significant inverse correlation between the number of spacers and prophages in S. pyogenes. It was therefore suggested that S. pyogenes CRISPR have permitted phage insertion by lacking its own spacers. Interestingly, in two closely related S. pyogenes strains (SSI-1 and MGAS315), CRISPR activity appeared to be impaired following the insertion of phage genomes into the repeat sequences. Detailed analysis of this prophage insertion site suggested that MGAS315 is the ancestral strain of SSI-1. As a result of analysis of 35 additional streptococcal genomes, it was suggested that the influences of the CRISPR on the phage insertion vary among species even within the same genus. Our results suggested that limitations in CRISPR content could explain the characteristic acquisition of prophages and might contribute to strain-specific pathogenesis in S. pyogenes

    The Streptococcus pneumoniae Pilus-1 Displays a Biphasic Expression Pattern

    Get PDF
    The Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1), which has three clonal variants (clade I, II and III) and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of infection. Several reports suggest that pilus-1 expression is tightly regulated and involves the interplay of numerous genetic regulators, including the PI-1 positive regulator RlrA. In this report we provide evidence that pilus expression, when analyzed at the single-cell level in PI-1 positive strains, is biphasic. In fact, the strains present two phenotypically different sub-populations of bacteria, one that expresses the pilus, while the other does not. The proportions of these two phenotypes are variable among the strains tested and are not influenced by genotype, serotype, growth conditions, colony morphology or by the presence of antibodies directed toward the pilus components. Two sub-populations, enriched in pilus expressing or not expressing bacteria were obtained by means of colony selection and immuno-detection methods for five strains. PI-1 sequencing in the two sub-populations revealed the absence of mutations, thus indicating that the biphasic expression observed is not due to a genetic modification within PI-1. Microarray expression profile and western blot analyses on whole bacterial lysates performed comparing the two enriched sub-populations, revealed that pilus expression is regulated at the transcriptional level (on/off regulation), and that there are no other genes, in addition to those encoded by PI-1, concurrently regulated across the strains tested. Finally, we provide evidence that the over-expression of the RrlA positive regulator is sufficient to induce pilus expression in pilus-1 negative bacteria. Overall, the data presented here suggest that the observed biphasic pilus expression phenotype could be an example of bistability in pneumococcus

    Bordetella pertussis Infection Exacerbates Influenza Virus Infection through Pertussis Toxin-Mediated Suppression of Innate Immunity

    Get PDF
    Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (Ξ”PT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1Ξ², IL-12, IFN-Ξ³, IL-6, KC, MCP-1 and TNF-Ξ± in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers
    • …
    corecore