729 research outputs found

    Trigger of twin‐fights in captive common marmosets

    Get PDF
    Common marmosets usually give birth to twins and form a social group consisting of a breeding couple and pairs of same-aged siblings. The twins may engage in the first agonistic fights between them, twin-fights (TFs), during adolescence. This study investigated the TFs based on records accumulated in our captive colony over 12 years to elucidate the proximate causations that trigger the TFs. We aimed to determine whether the TF onset mainly depended on internal events (such as the onset of puberty) as previously suggested or external events (such as the birth of the younger siblings and the behavioral change of the group members). Although both events usually occur simultaneously, the birth control method (i.e., manipulation of ovulation and interbirth-intervals by prostaglandin administration to females) could temporally separate these events. A comparison of the onset day and occurrence rate with or without the birth control procedure revealed that TFs were triggered by a combination of internal and external events, that is, external events were the predominant triggers of TF, under the influence of internal events. The timing of TF onset was significantly delayed when the birth of the younger siblings was delayed and the twins grew older under the birth-controlled condition,  suggesting that the birth of younger siblings and related behavioral changes of group members, as well as twins' developmental maturation, could trigger TF. Higher TF rates between same-sex twins were consistent with previous studies, reflecting the characteristics of same-sex directed aggression in callitrichines

    Fluoxetine-induced dematuration of hippocampal neurons and adult cortical neurogenesis in the common marmoset

    Get PDF
    The selective serotonin reuptake inhibitor fluoxetine (FLX) is widely used to treat depression and anxiety disorders. Chronic FLX treatment reportedly induces cellular responses in the brain, including increased adult hippocampal and cortical neurogenesis and reversal of neuron maturation in the hippocampus, amygdala, and cortex. However, because most previous studies have used rodent models, it remains unclear whether these FLX-induced changes occur in the primate brain. To evaluate the effects of FLX in the primate brain, we used immunohistological methods to assess neurogenesis and the expression of neuronal maturity markers following chronic FLX treatment (3 mg/kg/day for 4 weeks) in adult marmosets (n = 3 per group). We found increased expression of doublecortin and calretinin, markers of immature neurons, in the hippocampal dentate gyrus of FLX-treated marmosets. Further, FLX treatment reduced parvalbumin expression and the number of neurons with perineuronal nets, which indicate mature fast-spiking interneurons, in the hippocampus, but not in the amygdala or cerebral cortex. We also found that FLX treatment increased the generation of cortical interneurons; however, significant up-regulation of adult hippocampal neurogenesis was not observed in FLX-treated marmosets. These results suggest that dematuration of hippocampal neurons and increased cortical neurogenesis may play roles in FLX-induced effects and/or side effects. Our results are consistent with those of previous studies showing hippocampal dematuration and increased cortical neurogenesis in FLX-treated rodents. In contrast, FLX did not affect hippocampal neurogenesis or dematuration of interneurons in the amygdala and cerebral cortex

    Expression of progenitor cell/immature neuron markers does not present definitive evidence for adult neurogenesis

    Get PDF
    It is agreed upon that adult hippocampal neurogenesis (AHN) occurs in the dentate gyrus (DG) in rodents. However, the existence of AHN in humans, particularly in elderly individuals, remains to be determined. Recently, several studies reported that neural progenitor cells, neuroblasts, and immature neurons were detected in the hippocampus of elderly humans, based on the expressions of putative markers for these cells, claiming that this provides evidence of the persistence of AHN in humans. Herein, we briefly overview the phenomenon that we call “dematuration, ” in which mature neurons dedifferentiate to a pseudo-immature status and re-express the molecular markers of neural progenitor cells and immature neurons. Various conditions can easily induce dematuration, such as inflammation and hyper-excitation of neurons, and therefore, the markers for neural progenitor cells and immature neurons may not necessarily serve as markers for AHN. Thus, the aforementioned studies have not presented definitive evidence for the persistence of hippocampal neurogenesis throughout adult life in humans, and we would like to emphasize that those markers should be used cautiously when presented as evidence for AHN. Increasing AHN has been considered as a therapeutic target for Alzheimer’s disease (AD); however, given that immature neuronal markers can be re-expressed in mature adult neurons, independent of AHN, in various disease conditions including AD, strategies to increase the expression of these markers in the DG may be ineffective or may worsen the symptoms of such diseases

    The meaning of life for an elderly man living alone : a narrative approach

    Get PDF
    Aim: To improve nursing care for the elderly in order to allow them to live independently. This study has used the narrative of an elderly man to learn about what has given his life meaning.Method: Fifteen key concepts were extracted from interviews using the narrative approach.Results and Conclusions: Mr. A, now near the end of his life, has found meaning in living his life, not only for himself, but also for those around him. The elderly support their own physical and mental health,and adjust to day-to-day life. Nursing care for the elderly should watch for and support these self-supporting efforts

    Comparison of non-invasive, scalp-recorded auditory steady-state responses in humans, rhesus monkeys, and common marmosets

    Get PDF
    Auditory steady-state responses (ASSRs) are basic neural responses used to probe the ability of auditory circuits to produce synchronous activity to repetitive external stimulation. Reduced ASSR has been observed in patients with schizophrenia, especially at 40 Hz. Although ASSR is a translatable biomarker with a potential both in animal models and patients with schizophrenia, little is known about the features of ASSR in monkeys. Herein, we recorded the ASSR from humans, rhesus monkeys, and marmosets using the same method to directly compare the characteristics of ASSRs among the species. We used auditory trains on a wide range of frequencies to investigate the suitable frequency for ASSRs induction, because monkeys usually use stimulus frequency ranges different from humans for vocalization. We found that monkeys and marmosets also show auditory event-related potentials and phase-locking activity in gamma-frequency trains, although the optimal frequency with the best synchronization differed among these species. These results suggest that the ASSR could be a useful translational, cross-species biomarker to examine the generation of gamma-band synchronization in nonhuman primate models of schizophrenia

    Metal-insulator transition in the In/Si(111) surface

    Full text link
    The metal-insulator transition observed in the In/Si(111)-4x1 reconstruction is studied by means of ab initio calculations of a simplified model of the surface. Different surface bands are identified and classified according to their origin and their response to several structural distortions. We support the, recently proposed [New J. of Phys. 7 (2005) 100], combination of a shear and a Peierls distortions as the origin of the metal-insulator transition. Our results also seem to favor an electronic driving force for the transition.Comment: Presented in the 23 European Conference in Surface Science, Berlin, September 2005. Submitted to Surface Science (proceedings of the conference) in August 200

    Development of homogeneous and high-performance REBCO bulks with flexibility in shapes by the single-direction melt growth (SDMG) method

    Full text link
    We have developed a single-direction melt growth method in which REBCO melt-textured bulks grow only vertically from a seed plate utilizing the difference in peritectic temperatures of REBCO. Entirely c-grown YBCO, DyBCO and GdBCO bulks with various sizes and shapes were successfully fabricated with high reproducibility. Disk-shaped bulks showed high trapped fields with almost concentric field distributions, reflecting homogeneous and boundaryless bulky crystal. In particular, a YBCO bulk with a 32 mm diameter trapped a high field more than 1 T at 77 K. Furthermore, rectangular and joined hexagonal REBCO bulks were successfully fabricated, showing designed field-trapping distributions reflecting their shapes through well-connected superconducting joints among bulks.Comment: 8 pages, 6 figures, 2 table

    Video-Assisted Thoracoscopic Surgery Using Extracorporeal Membrane Oxygenation for Intractable Pneumothorax

    Get PDF
    Intractable pneumothorax with poor lung function that has received multiple conservative treatments may occur. Case 1 was a 70-year-old woman with aspergilloma who was admitted for pneumothorax. Case 2 was a 68-year-old man with acute exacerbation of interstitial pneumonia who developed pneumothorax. In both cases, multiple conservative therapies were administered, but the leak continued; thus, operations using veno-venous extracorporeal membrane oxygenation (ECMO) were planned. By video-assisted thoracoscopic surgery (VATS), we obtained the optimal surgical field by lung collapse. We removed many blood clots that were used for pleurodesis, ligated the bulla in case 1, and covered the leak point with strengthening agents in case 2. For cases of intractable pneumothorax, lung collapse by ECMO is advantageous because we can check details and leak points even in blood clots or in poor condition of the lung, and we can maneuver the lung in poor condition with a clear surgical field

    Somatic chromosomal translocation between Ewsr1 and Fli1 loci leads to dilated cardiomyopathy in a mouse model

    Get PDF
    A mouse model that recapitulates the human Ewing's sarcoma-specific chromosomal translocation was generated utilizing the Cre/loxP-mediated recombination technique. A cross between Ewsr1-loxP and Fli1-loxP mice and expression of ubiquitous Cre recombinase induced a specific translocation between Ewsr1 and Fli1 loci in systemic organs of both adult mice and embryos. As a result Ewsr1-Fli1 fusion transcripts were expressed, suggesting a functional Ews-Fli1 protein might be synthesized in vivo. However, by two years of age, none of the Ewsr1-loxP/Fli1-loxP/CAG-Cre (EFCC) mice developed any malignancies, including Ewing-like small round cell sarcoma. Unexpectedly, all the EFCC mice suffered from dilated cardiomyopathy and died of chronic cardiac failure. Genetic recombination between Ewsr1 and Fli1 was confirmed in the myocardial tissue and apoptotic cell death of cardiac myocytes was observed at significantly higher frequency in EFCC mice. Moreover, expression of Ews-Fli1 in the cultured cardiac myocytes induced apoptosis. Collectively, these results indicated that ectopic expression of the Ews-Fli1 oncogene stimulated apoptotic signals, and suggested an important relationship between oncogenic signals and cellular context in the cell-of-origin of Ewing's sarcoma
    corecore