199 research outputs found
Optimizing ISOCAM data processing using spatial redundancy
We present new data processing techniques that allow to correct the main
instrumental effects that degrade the images obtained by ISOCAM, the camera on
board the Infrared Space Observatory (ISO). Our techniques take advantage of
the fact that a position on the sky has been observed by several pixels at
different times. We use this information (1) to correct the long term variation
of the detector response, (2) to correct memory effects after glitches and
point sources, and (3) to refine the deglitching process. Our new method allows
the detection of faint extended emission with contrast smaller than 1% of the
zodiacal background. The data reduction corrects instrumental effects to the
point where the noise in the final map is dominated by the readout and the
photon noises. All raster ISOCAM observations can benefit from the data
processing described here. These techniques could also be applied to other
raster type observations (e.g. ISOPHOT or IRAC on SIRTF).Comment: 13 pages, 10 figures, to be published in Astronomy and Astrophysics
Supplement Serie
Serendipity observations of far infrared cirrus emission in the Spitzer Infrared Nearby Galaxies Survey: Analysis of far-infrared correlations
We present an analysis of far-infrared dust emission from diffuse cirrus
clouds. This study is based on serendipitous observations at 160 microns at
high galactic latitude with the Multiband Imaging Photometer (MIPS) onboard the
Spitzer Space Telescope by the Spitzer Infrared Nearby Galaxies Survey (SINGS).
These observations are complemented with IRIS data at 100 and 60 microns and
constitute one of the most sensitive and unbiased samples of far infrared
observations at small scale of diffuse interstellar clouds. Outside regions
dominated by the cosmic infrared background fluctuations, we observe a
substantial scatter in the 160/100 colors from cirrus emission. We compared the
160/100 color variations to 60/100 colors in the same fields and find a trend
of decreasing 60/100 with increasing 160/100. This trend can not be accounted
for by current dust models by changing solely the interstellar radiation field.
It requires a significant change of dust properties such as grain size
distribution or emissivity or a mixing of clouds in different physical
conditions along the line of sight. These variations are important as a
potential confusing foreground for extragalactic studies.Comment: 25 pages, 7 figures, 2 tables, accepted to Ap
IRIS: A new generation of IRAS maps
The Infrared Astronomical Satellite (IRAS) had a tremendous impact on many
areas of modern astrophysics. In particular it revealed the ubiquity of
infrared cirrus that are a spectacular manifestation of the interstellar medium
complexity but also an important foreground for observational cosmology. With
the forthcoming Planck satellite there is a need for all-sky complementary data
sets with arcminute resolution that can bring informations on specific
foreground emissions that contaminate the Cosmic Microwave Background
radiation. With its 4 arcmin resolution matching perfectly the high-frequency
bands of Planck, IRAS is a natural data set to study the variations of dust
properties at all scales. But the latest version of the images delivered by the
IRAS team (the ISSA plates) suffer from calibration, zero level and striping
problems that can preclude its use, especially at 12 and 25 micron. In this
paper we present how we proceeded to solve each of these problems and enhance
significantly the general quality of the ISSA plates in the four bands (12, 25,
60 and 100 micron). This new generation of IRAS images, called IRIS, benefits
from a better zodiacal light subtraction, from a calibration and zero level
compatible with DIRBE, and from a better destriping. At 100 micron the IRIS
product is also a significant improvement from the Schlegel et al. (1998) maps.
IRIS keeps the full ISSA resolution, it includes well calibrated point sources
and the diffuse emission calibration at scales smaller than 1 degree was
corrected for the variation of the IRAS detector responsivity with scale and
brightness. The uncertainty on the IRIS calibration and zero level are
dominated by the uncertainty on the DIRBE calibration and on the accuracy of
the zodiacal light model.Comment: 16 pages, 17 figures, accepted for publication in ApJ (Suppl). Higher
resolution version available at
http://www.cita.utoronto.ca/~mamd/IRIS/IrisTechnical.htm
The Photoionization of a Star-Forming Core in the Trifid Nebula
We have carried out a comprehensive multiwavelength study of Bright-Rimmed Globule TC2 in the Trifid Nebula using the IRAM~30m telescope, the VLA centimeter array and the Infrared Space Observatory (ISO). TC2 is one of the very few globules to exhibit signs of active ongoing star formation while being photoevaporated. The study of the kinematics shows that TC2 is currently undergoing an implosion driven by the ionization field. The physical structure of the molecular core, the Photon-Dominated Region and the ionization front are characterized. The properties of the PDR are in good agreement with some recent PDR models. The molecular emission suggests that the star formation process was probably initiated a few 0.1 Myr ago, in the large burst which led to the formation of the nebula. The impact of photoionization on the star formation process appears limited.Peer reviewe
GHIGLS: HI mapping at intermediate Galactic latitude using the Green Bank Telescope
This paper introduces the data cubes from GHIGLS, deep Green Bank Telescope
surveys of the 21-cm line emission of HI in 37 targeted fields at intermediate
Galactic latitude. The GHIGLS fields together cover over 1000 square degrees at
9.55' spatial resolution. The HI spectra have an effective velocity resolution
about 1.0 km/s and cover at least -450 < v < +250 km/s. GHIGLS highlights that
even at intermediate Galactic latitude the interstellar medium is very complex.
Spatial structure of the HI is quantified through power spectra of maps of the
column density, NHI. For our featured representative field, centered on the
North Ecliptic Pole, the scaling exponents in power-law representations of the
power spectra of NHI maps for low, intermediate, and high velocity gas
components (LVC, IVC, and HVC) are -2.86 +/- 0.04, -2.69 +/- 0.04, and -2.59
+/- 0.07, respectively. After Gaussian decomposition of the line profiles, NHI
maps were also made corresponding to the narrow-line and broad-line components
in the LVC range; for the narrow-line map the exponent is -1.9 +/- 0.1,
reflecting more small scale structure in the cold neutral medium (CNM). There
is evidence that filamentary structure in the HI CNM is oriented parallel to
the Galactic magnetic field. The power spectrum analysis also offers insight
into the various contributions to uncertainty in the data. The effect of 21-cm
line opacity on the GHIGLS NHI maps is estimated.Comment: Accepted for publication in The Astrophysical Journal, 2015 July 16.
32 pages, 21 figures (Fig. 10 new). Minor revisions from review, particularly
Section 8 and Appendix C; results unchanged. Additional surveys added and
made available; new Appendix B. Added descriptions of available FITS files
and links to four illustrative movies on enhanced GHIGLS archive
(www.cita.utoronto.ca/GHIGLS/
- …
