301 research outputs found
Multi-Overlap Simulations for Transitions between Reference Configurations
We introduce a new procedure to construct weight factors, which flatten the
probability density of the overlap with respect to some pre-defined reference
configuration. This allows one to overcome free energy barriers in the overlap
variable. Subsequently, we generalize the approach to deal with the overlaps
with respect to two reference configurations so that transitions between them
are induced. We illustrate our approach by simulations of the brainpeptide
Met-enkephalin with the ECEPP/2 energy function using the global-energy-minimum
and the second lowest-energy states as reference configurations. The free
energy is obtained as functions of the dihedral and the root-mean-square
distances from these two configurations. The latter allows one to identify the
transition state and to estimate its associated free energy barrier.Comment: 12 pages, (RevTeX), 14 figures, Phys. Rev. E, submitte
Temperature dependence of ESR intensity for the nanoscale molecular magnet V15
The electron spin resonance (ESR) of nanoscale molecular magnet is studied. Since the Hamiltonian of has a large
Hilbert space and numerical calculations of the ESR signal evaluating the Kubo
formula with exact diagonalization method is difficult, we implement the
formula with the help of the random vector technique and the Chebyshev
polynominal expansion, which we name the double Chebyshev expansion method. We
calculate the temperature dependence of the ESR intensity of and
compare it with the data obtained in experiment. As another complementary
approach, we also implement the Kubo formula with the subspace iteration method
taking only important low-lying states into account. We study the ESR
absorption curve below by means of both methods. We find that side
peaks appear due to the Dzyaloshinsky-Moriya interaction and these peaks grows
as temperature decreases.Comment: 9 pages, 4 figures. To appear in J. Phys. Soc. Jpn. Supp
Secondary-Structure Design of Proteins by a Backbone Torsion Energy
We propose a new backbone-torsion-energy term in the force field for protein
systems. This torsion-energy term is represented by a double Fourier series in
two variables, the backbone dihedral angles phi and psi. It gives a natural
representation of the torsion energy in the Ramachandran space in the sense
that any two-dimensional energy surface periodic in both phi and psi can be
expanded by the double Fourier series. We can then easily control
secondary-structure-forming tendencies by modifying the torsion-energy surface.
For instance, we can increase/decrease the alpha-helix-forming-tendencies by
lowering/raising the torsion-energy surface in the alpha-helix region and
likewise increase/decrease the beta-sheet-forming tendencies by
lowering/raising the surface in the beta-sheet region in the Ramachandran
space. We applied our approach to AMBER parm94 and AMBER parm96 force fields
and demonstrated that our modifications of the torsion-energy terms resulted in
the expected changes of secondary-structure-forming-tendencies by performing
folding simulations of alpha-helical and beta-hairpin peptides.Comment: 13 pages, (Revtex4), 5 figure
Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma.
Papillary thyroid carcinoma (PTC) etiologically occurs as a radiation-induced or sporadic malignancy. Genetic factors contributing to the susceptibility to either form remain unknown. In this retrospective case-control study, we evaluated possible associations between single-nucleotide polymorphisms (SNPs) in the candidate DNA damage response genes (ATM, XRCC1, TP53, XRCC3, MTF1) and risk of radiation-induced and sporadic PTC. A total of 255 PTC cases (123 Chernobyl radiation-induced and 132 sporadic, all in Caucasians) and 596 healthy controls (198 residents of Chernobyl areas and 398 subjects without history of radiation exposure, all Caucasians) were genotyped. The risk of PTC and SNPs interactions with radiation exposure were assessed by logistic regressions. The ATM G5557A and XRCC1 Arg399Gln polymorphisms, regardless of radiation exposure, associated with a decreased risk of PTC according to the multiplicative and dominant models of inheritance (odds ratio (OR) = 0.69, 95% confidence interval (CI) 0.45-0.86 and OR = 0.70, 95% CI 0.59-0.93 respectively). The ATM IVS22-77 T > C and TP53 Arg72Pro SNPs interacted with radiation (P = 0.04 and P = 0.01 respectively). ATM IVS22-77 associated with the increased risk of sporadic PTC (OR = 1.84, 95% CI 1.10-3.24) whereas TP53 Arg72Pro correlated with the higher risk of radiogenic PTC (OR = 1.80, 95% CI 1.06-2.36). In the analyses of ATM/TP53 (rs1801516/rs664677/rs609429/rs1042522) combinations, the GG/TC/CG/GC genotype strongly associated with radiation-induced PTC (OR = 2.10, 95% CI 1.17-3.78). The GG/CC/GG/GG genotype displayed a significantly increased risk for sporadic PTC (OR = 3.32, 95% CI 1.57-6.99). The results indicate that polymorphisms of DNA damage response genes may be potential risk modifiers of ionizing radiation-induced or sporadic PTCs
Copy Number Alteration and Uniparental Disomy Analysis Categorizes Japanese Papillary Thyroid Carcinomas into Distinct Groups
The aim of the present study was to investigate chromosomal aberrations in sporadic Japanese papillary thyroid carcinomas (PTCs), concomitant with the analysis of oncogene mutational status. Twenty-five PTCs (11 with BRAFV600E, 4 with RET/PTC1, and 10 without mutation in HRAS, KRAS, NRAS, BRAF, RET/PTC1, or RET/PTC3) were analyzed using Genome-Wide Human SNP Array 6.0 which allows us to detect copy number alteration (CNA) and uniparental disomy (UPD), also referred to as copy neutral loss of heterozygosity, in a single experiment. The Japanese PTCs showed relatively stable karyotypes. Seven cases (28%) showed CNA(s), and 6 (24%) showed UPD(s). Interestingly, CNA and UPD were rarely overlapped in the same tumor; the only one advanced case showed both CNA and UPD with a highly complex karyotype. Thirteen (52%) showed neither CNA nor UPD. Regarding CNA, deletions tended to be more frequent than amplifications. The most frequent and recurrent region was the deletion in chromosome 22; however, it was found in only 4 cases (16%). The degree of genomic instability did not depend on the oncogene status. However, in oncogene-positive cases (BRAFV600E and RET/PTC1), tumors with CNA/UPD were less frequent (5/15, 33%), whereas tumors with CNA/UPD were more frequent in oncogene-negative cases (7/10, 70%), suggesting that chromosomal aberrations may play a role in the development of PTC, especially in oncogene-negative tumors. These data suggest that Japanese PTCs may be classified into three distinct groups: CNA+, UPD+, and no chromosomal aberrations. BRAFV600E mutational status did not correlate with any parameters of chromosomal defects
Systematic mutation analysis of KIAA0767 and KIAA1646 in chromosome 22q-linked periodic catatonia
BACKGROUND: Periodic catatonia is a familial subtype of schizophrenia characterized by hyperkinetic and akinetic episodes, followed by a catatonic residual syndrome. The phenotype has been evaluated in two independent genome-wide linkage scans with evidence for a major locus on chromosome 15q15, and a second independent locus on chromosome 22q(tel). METHODS: In the positional and brain-expressed candidate genes KIAA0767 and KIAA1646, we searched for variants in the complete exons and adjacent splice-junctions as well as in parts of the 5'- and 3'-untranslated regions by means of a systematic mutation screening in individuals from chromosome 22q-linked pedigrees. RESULTS: The mutation scan revealed 24 single nucleotide polymorphisms, among them two rare codon variants (KIAA0767: S159I; KIAA1646: V338G). However, both were neither found segregating with the disease in the respective pedigree nor found at a significant frequency in a case-control association sample. CONCLUSION: Starting from linkage signals at chromosome22q(tel )in periodic catatonia, we screened two positional brain-expressed candidate genes for genetic variation. Our study excludes genetic variations in the coding and putative promoter regions of KIAA0767 and KIAA1646 as causative factors for periodic catatonia
Self-renewal and chemotherapy resistance of p75NTR positive cells in esophageal squamous cell carcinomas
<p>Abstract</p> <p>Background</p> <p>p75<sup>NTR </sup>has been used to isolate esophageal and corneal epithelial stem cells. In the present study, we investigated the expression of p75<sup>NTR </sup>in esophageal squamous cell carcinoma (ESCC) and explored the biological properties of p75<sup>NTR+ </sup>cells.</p> <p>Methods</p> <p>p75<sup>NTR </sup>expression in ESCC was assessed by immunohistochemistry. p75<sup>NTR+ </sup>and p75<sup>NTR- </sup>cells of 4 ESCC cell lines were separated by fluorescence-activated cell sorting. Differentially expressed genes between p75<sup>NTR+ </sup>and p75<sup>NTR- </sup>cells were determined by real-time quantitative reverse transcription-PCR. Sphere formation assay, DDP sensitivity assay, <sup>64</sup>copper accumulation assay and tumorigenicity analysis were performed to determine the capacity of self-renewal, chemotherapy resistance and tumorigenicity of p75<sup>NTR+ </sup>cells.</p> <p>Results</p> <p>In ESCC specimens, p75<sup>NTR </sup>was found mainly confined to immature cells and absent in cells undergoing terminal differentiation. The percentage of p75<sup>NTR+ </sup>cells was 1.6%–3.7% in Eca109 and 3 newly established ESCC cell lines. The expression of Bmi-1, which is associated with self-renewal of stem cells, was significantly higher in p75<sup>NTR+ </sup>cells. p63, a marker identified in keratinocyte stem cells, was confined mainly to p75<sup>NTR+ </sup>cells. The expression of CTR1, which is associated with cisplatin (DDP)-resistance, was significantly decreased in p75<sup>NTR+ </sup>cells. Expression levels of differentiation markers, such as involucrin, cytokeratin 13, β1-integrin and β4-integrin, were lower in p75<sup>NTR+ </sup>cells. In addition, p75<sup>NTR+ </sup>cells generated both p75<sup>NTR+ </sup>and p75<sup>NTR- </sup>cells, and formed nonadherent spherical clusters in serum-free medium supplemented with growth factors. Furthermore, p75<sup>NTR+ </sup>cells were found to be more resistant to DDP and exhibited lower <sup>64</sup>copper accumulation than p75<sup>NTR- </sup>cells.</p> <p>Conclusion</p> <p>Our results demonstrated that p75<sup>NTR+ </sup>cells possess some characteristics of CSCs, namely, self-renewal and chemotherapy resistance. Chemotherapy resistance of p75<sup>NTR+ </sup>cells may probably be attributable to decreased expression of CTR1.</p
Cross-Regulation between Oncogenic BRAFV600E Kinase and the MST1 Pathway in Papillary Thyroid Carcinoma
BACKGROUND:The BRAF(V600E) mutation leading to constitutive signaling of MEK-ERK pathways causes papillary thyroid cancer (PTC). Ras association domain family 1A (RASSF1A), which is an important regulator of MST1 tumor suppressor pathways, is inactivated by hypermethylation of its promoter region in 20 to 32% of PTC. However, in PTC without RASSF1A methylation, the regulatory mechanisms of RASSF1A-MST1 pathways remain to be elucidated, and the functional cooperation or cross regulation between BRAF(V600E) and MST1,which activates Foxo3,has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS:The negative regulators of the cell cycle, p21 and p27, are strongly induced by transcriptional activation of FoxO3 in BRAF(V600E) positive thyroid cancer cells. The FoxO3 transactivation is augmented by RASSF1A and the MST1 signaling pathway. Interestingly, introduction of BRAF(V600E)markedly abolished FoxO3 transactivation and resulted in the suppression of p21 and p27 expression. The suppression of FoxO3 transactivation by BRAF(V600E)is strongly increased by coexpression of MST1 but it is not observed in the cells in which MST1, but not MST2,is silenced. Mechanistically, BRAF(V600E)was able to bind to the C-terminal region of MST1 and resulted in the suppression of MST1 kinase activities. The induction of the G1-checkpoint CDK inhibitors, p21 and p27,by the RASSF1A-MST1-FoxO3 pathway facilitates cellular apoptosis, whereas addition of BRAF(V600E) inhibits the apoptotic processes through the inactivation of MST1. Transgenic induction of BRAF(V600E)in the thyroid gland results in cancers resembling human papillary thyroid cancers. The development of BRAF(V600E)transgenic mice with the MST1 knockout background showed that these mice had abundant foci of poorly differentiated carcinomas and large areas without follicular architecture or colloid formation. CONCLUSIONS/SIGNIFICANCE:The results of this study revealed that the oncogenic effect of BRAF(V600E) is associated with the inhibition of MST1 tumor suppressor pathways, and that the activity of RASSF1A-MST1-FoxO3 pathways determines the phenotypes of BRAF(V600E) tumors
Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction
While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases
- …