172 research outputs found

    Measurement of proton polarization in [208]Pb(d,p)[209]Pb reaction at incident deuteron energy of 20 MeV

    Get PDF
    Thesis (Ph. D. in Science)--University of Tsukuba, (A), no. 3011, 2002.11.30Includes bibliographical references"[208]" and "[209]" are superscrip

    The discriminant and the determinant of a hypersurface of even dimension

    Full text link
    For a smooth hypersurface of even dimension, the quadratic character of the absolute Galois group defined by the determinant of the l-adic cohomology of middle dimension is computed via the square root of the discriminant of a defining polynomial of the hypersurface.Comment: 20 pages. In V2, there remains only one author. More details are adde

    Energetic particle transport and loss induced by helically-trapped energetic-ion-driven resistive interchange modes in the Large Helical Device

    Get PDF
    In this work, energetic-ion confinement and loss due to energetic-ion driven magnetohydrodynamic modes are studied using comprehensive neutron diagnostics and orbit-following numerical simulations for the Large Helical Device (LHD). The neutron flux monitor is employed in order to obtain global confinement of energetic ions and two installed vertical neutron cameras (VNCs) viewing different poloidal cross-sections are utilized in order to measure the radial profile of energetic ions. A strong helically-trapped energetic-ion-driven resistive interchange mode (EIC) excited in relatively low-density plasma terminated high-temperature state in LHD. Changes in the neutron emission profile due to the EIC excitation are clearly visualized by the VNCs. The reduction in the neutron signal for the helical ripple valley increases with EIC amplitude, which reaches approximately 50%. In addition to the EIC experiment, orbit-following simulations using the DELTA5D code with EIC fluctuations were performed to assess the energetic-ion transport and loss. Two-dimensional temporal evolution results show that the neutron emissivity at the helical ripple decreases significantly due to the EIC. The rapid reduction in neutron emissivity shows that the helically-trapped beam ions immediately escape from the plasma. The reduction in the VNC signals for the helical ripple valley and the total neutron emission rate increase with increasing EIC amplitude, as observed in the experiment. Calculated line-integrated neutron emission results show that the profile measured by VNC1 has one peak, whereas the profile measured by VNC2 has two peaks, as observed in the experiment. Although the neutron emission profile for VNC2 has a relatively wide peak compared with the experimental results, the significant decrease in neutron signal corresponding to the helical ripple valley was successfully reproduced

    A study of beam ion and deuterium–deuterium fusion-born triton transports due to energetic particle-driven magnetohydrodynamic instability in the large helical device deuterium plasmas

    Get PDF
    Understanding energetic particle transport due to magnetohydrodynamic instabilities excited by energetic particles is essential to apprehend alpha particle confinement in a fusion burning plasma. In the large helical device (LHD), beam ion and deuterium–deuterium fusion-born triton transport due to resistive interchange mode destabilized by helically-trapped energetic ions (EIC) are studied employing comprehensive neutron diagnostics, such as the neutron flux monitor and a newly developed scintillating fiber detector characterized by high detection efficiency. Beam ion transport due to EIC is studied in deuterium plasmas with full deuterium or hydrogen/deuterium beam injections. The total neutron emission rate (Sn) measurement indicates that EIC induces about a 6% loss of passing transit beam ions and a 60% loss of helically-trapped ions. The loss rate of helically-trapped ions, which drive EIC, is larger than the loss rate of passing transit beam ions. Furthermore, the drop of Sn increasing linearly with the EIC amplitude shows that barely confined beam ions existing near the confinement-loss boundary are lost due to EIC. In full deuterium conditions, a study of deuterium–deuterium fusion-born triton transport due to EIC is performed by time-resolved measurement of total secondary deuterium–tritium neutron emission rate (Sn_DT). Drop of Sn_DT increases substantially with EIC amplitude to the third power and reaches up to 30%. The relation shows that not only tritons confined in confined-loss boundary, but also tritons confined in the inner region of a plasma, are substantially transported

    Energetic ion confinement studies using comprehensive neutron diagnostics in the Large Helical Device

    Get PDF
    Understanding energetic particle (EP) confinement is one of the critical issues in realizing fusion reactors. In stellarator/helical devices, the research on EP confinement is one of the key topics to obtain better confinement by utilizing the flexibility of a 3D magnetic field. A study of EP transport in the Large Helical Device (LHD) has been performed by means of escaping EP diagnostics in hydrogen plasma operation. By starting deuterium operation of the LHD, the confinement study of EPs has progressed remarkably using newly developed comprehensive neutron diagnostics providing information for EPs confined in the core region. The total neutron emission rate (Sn) increases due to the relatively low deviation of the beam ion orbit from the flux surface with the inward shift of the magnetic axis. The Sn has a peak around the electron density of 2  ×  1019 m−3 to 3  ×  1019 m−3, as predicted. It is found that the fraction of beam–beam components in Sn is evaluated to be approximately 20% by the Fokker–Planck models TASK/FP in the plasma with both co- and counter-neutral beam injections. The equivalent fusion gain in DT plasma achieved 0.11 in a negative-ion-based neutral beam heated plasma. Time evolution of Sn following the short pulse neutral beam injection into the electron–cyclotron-heated low-beta plasma is reproduced by drift kinetic simulation, indicating that transport of a beam ion injected by a short pulse neutral beam can be described with neoclassical models in magnetohydrodynamic quiescent low-beta plasmas. The vertical neutron camera works successfully, demonstrating that in the co-neutral beam-injected plasma, the neutron emission profile shifts according to the magnetic axis position. The shift of the neutron emission profile is reproduced by orbit-following models. The triton burnup study is performed for the first time in a stellarator/heliotron to understand the alpha particle confinement. It is found that the triton burnup ratio, which largely increases at inward-shifted configurations due to the better triton orbit and better plasma performance in the inward-shifted configuration, is similar to that measured in a tokamak having a similar minor radius to the LHD. We study the confinement capability of EPs toward a helical reactor in the magnetohydrodynamic quiescent region and expansion of the energetic ion physics study in toroidal fusion plasmas

    Characteristics of neutron emission profile from neutral beam heated plasmas of the Large Helical Device at various magnetic field strengths

    Get PDF
    The neutron emission profile of deuterium plasma in the Large Helical Device was measured with a multi-sightline vertical neutron camera under various magnetic field strength conditions. It was found that the line-integrated neutron emission profile shifts outward in the co-neutral beam (NB) case and inward in the counter NB case. Here, co- and counter directions correspond to enhance and reduce the poloidal magnetic field directions, respectively. The shift becomes more significant when the magnetic field decreased in strength. The experimentally obtained neutron emission profile was compared with the orbit-following models simulated through the DELTA5D code. The calculated neutron emission profiles vary according to the magnetic field strength because of the change of beam ion orbit and the slowing down due to the plasma parameter changes. Although a relatively narrow profile was obtained in the calculations at the inboard side for the co-NB case in the relatively low field condition, the profiles obtained through calculation and experiment were almost qualitatively aligned

    Rice immediately adapts the dynamics of photosynthates translocation to roots in response to changes in soil water environment

    Get PDF
    Rice is susceptible to abiotic stresses such as drought stress. To enhance drought resistance, elucidating the mechanisms by which rice plants adapt to intermittent drought stress that may occur in the field is an important requirement. Roots are directly exposed to changes in the soil water condition, and their responses to these environmental changes are driven by photosynthates. To visualize the distribution of photosynthates in the root system of rice plants under drought stress and recovery from drought stress, we combined X-ray computed tomography (CT) with open type positron emission tomography (OpenPET) and positron-emitting tracer imaging system (PETIS) with 11C tracer. The short half-life of 11C (20.39 min) allowed us to perform multiple experiments using the same plant, and thus photosynthate translocation was visualized as the same plant was subjected to drought stress and then re-irrigation for recovery. The results revealed that when soil is drier, 11C-photosynthates mainly translocated to the seminal roots, likely to promote elongation of the root with the aim of accessing water stored in the lower soil layers. The photosynthates translocation to seminal roots immediately stopped after rewatering then increased significantly in crown roots. We suggest that when rice plant experiencing drought is re-irrigated from the bottom of pot, the destination of 11C-photosynthates translocation immediately switches from seminal root to crown roots. We reveal that rice roots are responsive to changes in soil water conditions and that rice plants differentially adapts the dynamics of photosynthates translocation to crown roots and seminal roots depending on soil conditions

    Studies of energetic particle transport induced by multiple Alfvén eigenmodes using neutron and escaping energetic particle diagnostics in Large Helical Device deuterium plasmas

    Get PDF
    Studies of energetic particle transport due to energetic-particle-driven Alfvénic instability have progressed using neutron and energetic particle diagnostics in Large Helical Device deuterium plasmas. Alfvénic instability excited by injecting an intensive neutral beam was observed by a magnetic probe and a far-infrared laser interferometer. The interferometer showed Alfvénic instability composed of three modes that existed from the core to the edge of the plasma. A comparison between the observed frequency and shear Alfvén spectra suggested that the mode activity was most likely classified as an Alfvénic avalanche. A neutron fluctuation detector and a fast ion loss detector indicated that Alfvénic instability induced transport and loss of co-going transit energetic ions. The dependence of the drop rate of the neutron signal on the Alfvénic instability amplitude showed that significant transport occurred. Significant transport might be induced by the large amplitude and radially extended multiple modes, as well as a large deviation of the energetic ion orbit from the flux surface

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of ÎČ and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix
    • 

    corecore