596 research outputs found

    Dynamic Active Constraints for Surgical Robots using Vector Field Inequalities

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still underrepresented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this work, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.Comment: Accepted on T-RO 2019, 19 Page

    Autonomous Coordinated Control of the Light Guide for Positioning in Vitreoretinal Surgery

    Full text link
    Vitreoretinal surgery is challenging even for expert surgeons owing to the delicate target tissues and the diminutive workspace in the retina. In addition to improved dexterity and accuracy, robot assistance allows for (partial) task automation. In this work, we propose a strategy to automate the motion of the light guide with respect to the surgical instrument. This automation allows the instrument's shadow to always be inside the microscopic view, which is an important cue for the accurate positioning of the instrument in the retina. We show simulations and experiments demonstrating that the proposed strategy is effective in a 700-point grid in the retina of a surgical phantom. Furthermore, we integrated the proposed strategy with image processing and succeeded in positioning the surgical instrument's tip in the retina, relying on only the robot's geometric information and microscopic images.Comment: Accepted on T-MRB 2022, 16 page

    Single-Shot Pose Estimation of Surgical Robot Instruments' Shafts from Monocular Endoscopic Images

    Full text link
    Surgical robots are used to perform minimally invasive surgery and alleviate much of the burden imposed on surgeons. Our group has developed a surgical robot to aid in the removal of tumors at the base of the skull via access through the nostrils. To avoid injuring the patients, a collision-avoidance algorithm that depends on having an accurate model for the poses of the instruments' shafts is used. Given that the model's parameters can change over time owing to interactions between instruments and other disturbances, the online estimation of the poses of the instrument's shaft is essential. In this work, we propose a new method to estimate the pose of the surgical instruments' shafts using a monocular endoscope. Our method is based on the use of an automatically annotated training dataset and an improved pose-estimation deep-learning architecture. In preliminary experiments, we show that our method can surpass state of the art vision-based marker-less pose estimation techniques (providing an error decrease of 55% in position estimation, 64% in pitch, and 69% in yaw) by using artificial images.Comment: Accepted on ICRA 2020, 7 page

    Active Constraints using Vector Field Inequalities for Surgical Robots

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but is still underrepresented in deep brain neurosurgery and endonasal surgery where the workspace is constrained. In these conditions, the vision of surgeons is restricted to areas near the surgical tool tips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings, in particular in areas outside the surgical field-of-view. Active constraints can be used to prevent the tools from entering restricted zones and thus avoid collisions. In this paper, a vector field inequality is proposed that guarantees that tools do not enter restricted zones. Moreover, in contrast with early techniques, the proposed method limits the tool approach velocity in the direction of the forbidden zone boundary, guaranteeing a smooth behavior and that tangential velocities will not be disturbed. The proposed method is evaluated in simulations featuring two eight degrees-of-freedom manipulators that were custom-designed for deep neurosurgery. The results show that both manipulator-manipulator and manipulator-boundary collisions can be avoided using the vector field inequalities.Comment: Accepted on ICRA 2018, 8 page

    Impacto del orden canónico de constituyentes y la animacidad en el procesamiento de oraciones en español

    Get PDF
    Trabajo de investigaciónEstudia el impacto del orden canónico de constituyentes y la animacidad en el procesamiento de oraciones en español. Para ello realizó una réplica del estudio de Casado et al. (2005). El presente experimento es de tipo conductual y emplea a técnica de lectura autoadministrada (Self Paced Reading). La comparación de tiempos de lectura de oraciones SVO y OVS muestra que las oraciones OVS requieren un mayor costo de procesamiento. Además, los resultados indican que la animacidad del objeto dificulta el procesamiento oracional en español. La novedad de la investigación es que estudio el procesamiento de oraciones transitivas; además, empleo la técnica conductual de lectura autoadministrada.Trabajo de investigació

    Soft X-ray Energy Spectra in the Wide-Field Galactic Disk Area Revealed with HaloSat

    Full text link
    We analyzed data from HaloSat observations for five fields in the Galactic disk located far away from the Galactic center (135^{\circ} << ll << 254^{\circ}) to understand the nature of soft X-ray energy emission in the Galactic disk. The fields have 14^{\circ} diameter and were selected to contain no significant high-flux X-ray sources. All five HaloSat soft X-ray energy spectra (0.4--7 keV with energy resolution of <<100 eV below 1 keV) show a possibility of the presence of unresolved high-temperature plasma in the Galactic disk (UHTPGD) with a temperature of 0.8--1.0 keV and an emission measure of (8--11)×104cm6pc\times10^{-4} \rm cm^{-6} pc in addition to the soft X-ray diffuse background components mainly studied at higher galactic latitudes (solar wind charge exchange emission, local hot bubble, Milky Way halo emission, and the cosmic X-ray background). This suggests that the UHTPGD is present across the whole Galactic disk. We also observed UHTPGD emission in a region with no bright sources in an {\it XMM-Newton} field contained within one of the {\it HaloSat} fields. The temperature and emission measure are consistent with those measured with {\it HaloSat}. Moreover, the stacked spectra of the X-ray point-like sources and NIR-identified point sources such as stars in the {\it XMM-Newton} field also show a spectral feature similar to the UHTPGD emission. This suggests that the UHTPGD may partly originate from point-like sources such as stars.Comment: Accepted for publication in ApJ. 11 pages and 4 figure

    Interstellar Gas and X-rays toward the Young Supernova Remnant RCW 86; Pursuit of the Origin of the Thermal and Non-Thermal X-ray

    Full text link
    We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3 mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to identify the interstellar medium with which the shock waves of the SNR interact. We have found an HI intensity depression in the velocity range between 46-46 and 28-28 km s1^{-1} toward the SNR, suggesting a cavity in the interstellar medium. The HI cavity coincides with the thermal and non-thermal emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI distribution, which indicates a strong density gradient, while the non-thermal X-rays are found toward the less dense, inner part of the HI cavity. The most significant non-thermal X-rays are seen toward the southwestern part of the shell where the HI gas traces the dense and cold component. We also identified CO clouds which are likely interacting with the SNR shock waves in the same velocity range as the HI, although the CO clouds are distributed only in a limited part of the SNR shell. The most massive cloud is located in the southeastern part of the shell, showing detailed correspondence with the thermal X-rays. These CO clouds show an enhanced CO JJ = 2-1/1-0 intensity ratio, suggesting heating/compression by the shock front. We interpret that the shock-cloud interaction enhances non-thermal X-rays in the southwest and the thermal X-rays are emitted by the shock-heated gas of density 10-100 cm3^{-3}. Moreover, we can clearly see an HI envelope around the CO cloud, suggesting that the progenitor had a weaker wind than the massive progenitor of the core-collapse SNR RX J1713.7-3949. It seems likely that the progenitor of RCW 86 was a system consisting of a white dwarf and a low-mass star with low-velocity accretion winds.Comment: 19 pages, 15 figures, 4 tables, accepted for publication in Journal of High Energy Astrophysics (JHEAp

    A Chandra observation of the ultraluminous infrared galaxy IRAS 19254--7245 (the Superantennae): X-ray emission from the Compton-thick AGN and the diffuse starburst

    Full text link
    We present a {\it Chandra} observation of IRAS 19254--7245, a nearby ULIRG also known as {\it the Superantennae}. The high spatial resolution of {\it Chandra} allows us to disentangle for the first time the diffuse starburst emission from the embedded Compton-thick AGN. The 2-10 keV spectrum of the AGN emission is fitted by a flat power-law Γ=1.3\Gamma=1.3) and a He-like Fe Kα\alpha line with EW\sim1.5 keV, consistent with previous observations. The Fe Kα\alpha line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability is detected compared with the previous {\it XMM-Newton} and {\it suzaku} observations, demonstrating the compact size of the iron line emission. We fit the spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources with a soft thermal component with kT~0.8 keV. The luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the starburst (no contribution to the feedback by the AGN is required). A candidate ultra-luminous X-ray source is detected 8\arcsec\ south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is ~6×10406\times 10^{40} erg s1^{-1} if the emission is isotropic and the source is associated with the Superantennae.Comment: 31 pages, 10 figures, submitted to Ap
    corecore