85 research outputs found
An epigenomic approach to therapy for tamoxifen-resistant breast cancer
Tamoxifen has been a frontline treatment for estrogen receptor alpha (ERα)-positive breast tumors in premenopausal women. However, resistance to tamoxifen occurs in many patients. ER still plays a critical role in the growth of breast cancer cells with acquired tamoxifen resistance, suggesting that ERα remains a valid target for treatment of tamoxifen-resistant (Tam-R) breast cancer. In an effort to identify novel regulators of ERα signaling, through a small-scale siRNA screen against histone methyl modifiers, we found WHSC1, a histone H3K36 methyltransferase, as a positive regulator of ERα signaling in breast cancer cells. We demonstrated that WHSC1 is recruited to the ERα gene by the BET protein BRD3/4, and facilitates ERα gene expression. The small-molecule BET protein inhibitor JQ1 potently suppressed the classic ERα signaling pathway and the growth of Tam-R breast cancer cells in culture. Using a Tam-R breast cancer xenograft mouse model, we demonstrated in vivo anti-breast cancer activity by JQ1 and a strong long-lasting effect of combination therapy with JQ1 and the ER degrader fulvestrant. Taken together, we provide evidence that the epigenomic proteins BRD3/4 and WHSC1 are essential regulators of estrogen receptor signaling and are novel therapeutic targets for treatment of Tam-R breast cancer
Recommended from our members
Targeting transcription regulation in cancer with a covalent CDK7 inhibitor
Tumor oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state1, but direct pharmacological inhibition of transcription factors has thus far proven difficult2. However, the transcriptional machinery contains various enzymatic co-factors that can be targeted for development of new therapeutic candidates3, including cyclin-dependent kinases (CDKs)4. Here we present the discovery and characterization of the first covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell line profiling indicates that a subset of cancer cell lines, including T-ALL, exhibit exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and this transcription factor’s key role in the core transcriptional regulatory circuitry of these tumor cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumor types exhibiting extreme dependencies on transcription for maintenance of the oncogenic state
PDXNet portal: patient-derived Xenograft model, data, workflow and tool discovery.
We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI\u27s Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials
Targeting transcription regulation in cancer with a covalent CDK7 inhibitor
Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state, but direct pharmacological inhibition of transcription factors has so far proven difficult. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates, including cyclin-dependent kinases (CDKs). Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and the key role of RUNX1 in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.National Institutes of Health (U.S.) (Grant HG002668)National Institutes of Health (U.S.) (Grant CA109901
- …