1,500 research outputs found
Integrating the Fermi Gamma-Ray Burst Monitor into the 3rd Interplanetary Network
We are integrating the Fermi Gamma-Ray Burst Monitor (GBM) into the
Interplanetary Network (IPN) of Gamma-Ray Burst (GRB) detectors. With the GBM,
the IPN will comprise 9 experiments. This will 1) assist the Fermi team in
understanding and reducing their systematic localization uncertainties, 2)
reduce the sizes of the GBM and Large Area Telescope (LAT) error circles by 1
to 4 orders of magnitude, 3) facilitate the identification of GRB sources with
objects found by ground- and space-based observatories at other wavelengths,
from the radio to very high energy gamma-rays, 4) reduce the uncertainties in
associating some LAT detections of high energy photons with GBM bursts, and 5)
facilitate searches for non-electromagnetic GRB counterparts, particularly
neutrinos and gravitational radiation. We present examples and demonstrate the
synergy between Fermi and the IPN. This is a Fermi Cycle 2 Guest Investigator
project.Comment: 5 pages, 11 figures. 2009 Fermi Symposium. eConf Proceedings C09112
Search for astro-gravity correlations
A new approach in the gravitational wave experiment is considered. In
addition to the old method of searching for coincident reactions of two
separated gravitational antennae it was proposed to seek perturbations of the
gravitational detector noise background correlated with astrophysical events
such as neutrino and gamma ray bursts which can be relaibly registered by
correspondent sensors. A general algorithm for this approach is developed. Its
efficiency is demonstrated in reanalysis of the old data concerning the
phenomenon of neutrino-gravity correlation registered during of SN1987A
explosion.Comment: 29 pages (LaTeX), 4 figures (EPS
Gamma Ray Bursts from the Evolved Galactic Nuclei
A new cosmological scenario for the origin of gamma ray bursts (GRBs) is
proposed. In our scenario, a highly evolved central core in the dense galactic
nucleus is formed containing a subsystem of compact stellar remnants (CSRs),
such as neutron stars and black holes. Those subsystems result from the
dynamical evolution of dense central stellar clusters in the galactic nuclei
through merging of stars, thereby forming (as has been realized by many
authors) the short-living massive stars and then CSRs. We estimate the rate of
random CSR collisions in the evolved galactic nuclei by taking into account,
similar to Quinlan & Shapiro (1987), the dissipative encounters of CSRs, mainly
due to radiative losses of gravitational waves, which results in the formation
of intermediate short-living binaries, with further coalescence of the
companions to produce GRBs. We also consider how the possible presence of a
central supermassive black hole, formed in a highly evolved galactic nucleus,
influences the CSR binary formation. This scenario does not postulate ad hoc a
required number of tight binary neutron stars in the galaxies. Instead, it
gives, for the most realistic parameters of the evolved nuclei, the expected
rate of GRBs consistent with the observed one, thereby explaining the GRB
appearance in a natural way of the dynamical evolution of galactic nuclei. In
addition, this scenario provides an opportunity for a cosmological GRB
recurrence, previously considered to be a distinctive feature of GRBs of a
local origin only. We also discuss some other observational tests of the
proposed scenario.Comment: 25 pages, LATEX, uses aasms4.sty, accepted by Ap
Extended Emission from Short Gamma-Ray Bursts Detected with SPI-ACS/INTEGRAL
The short duration (T90 < 2 s) gamma-ray bursts (GRBs) detected in the
SPI-ACS experiment onboard the INTEGRAL observatory are investigated. Averaged
light curves have been constructed for various groups of events, including
short GRBs and unidentified short events. Extended emission has been found in
the averaged light curves of both short GRBs and unidentified short events. It
is shown that the fraction of the short GRBs in the total number of SPI-ACS
GRBs can range from 30 to 45%, which is considerably larger than has been
thought previously.Comment: 27 pages, 10 figure
The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts
We present Interplanetary Network (IPN) data for the gamma-ray bursts in the
first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that
catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least
one other instrument in the 9-spacecraft IPN. Of the 427, the localizations of
149 could be improved by arrival time analysis (or triangulation). For any
given burst observed by the GBM and one other distant spacecraft, triangulation
gives an annulus of possible arrival directions whose half-width varies between
about 0.4' and 32 degrees, depending on the intensity, time history, and
arrival direction of the burst, as well as the distance between the spacecraft.
We find that the IPN localizations intersect the 1 sigma GBM error circles in
only 52% of the cases, if no systematic uncertainty is assumed for the latter.
If a 6 degree systematic uncertainty is assumed and added in quadrature, the
two localization samples agree about 87% of the time, as would be expected. If
we then multiply the resulting error radii by a factor of 3, the two samples
agree in slightly over 98% of the cases, providing a good estimate of the GBM 3
sigma error radius. The IPN 3 sigma error boxes have areas between about 1
square arcminute and 110 square degrees, and are, on the average, a factor of
180 smaller than the corresponding GBM localizations. We identify two bursts in
the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM
triggered on a terrestrial gamma flash, and in the other, its origin was given
as uncertain. We also discuss the sensitivity and calibration of the IPN.Comment: 52 pages, 12 figures, 4 tables. Revised version, resubmitted to the
Astrophysical Journal Supplement Series following refereeing. Figures of the
localizations in Table 3 may be found on the IPN website, at
ssl.berkeley.edu/ipn3/YYMMDD, where YY, MM, and DD are the year, month, and
day of the burst, sometimes with suffixes A or
The ultraluminous GRB 110918A
GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19
years of continuous observations and the most luminous GRB ever observed since
the beginning of the cosmological era in 1997. We report on the final IPN
localization of this event and its detailed multiwavelength study with a number
of space-based instruments. The prompt emission is characterized by a typical
duration, a moderare of the time-integrated spectrum, and strong
hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a
huge isotropic-equivalent energy release
erg. The record-breaking energy flux observed at the peak of the short, bright,
hard initial pulse results in an unprecedented isotropic-equivalent luminosity
erg s. A tail of the soft gamma-ray
emission was detected with temporal and spectral behavior typical of that
predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT
observed the bright afterglow from 1.2 to 48 days after the burst and revealed
no evidence of a jet break. The post-break scenario for the afterglow is
preferred from our analysis, with a hard underlying electron spectrum and
ISM-like circumburst environment implied. We conclude that, among multiple
reasons investigated, the tight collimation of the jet must have been a key
ingredient to produce this unusually bright burst. The inferred jet opening
angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected
radiated energy and the peak luminosity, which, however, are still at the top
of their distributions for such tightly collimated events. We estimate a
detection horizon for a similar ultraluminous GRB of for Konus-WIND,
and for Swift/BAT, which stresses the importance of GRBs as probes of
the early Universe.Comment: 22 pages, 20 figures, accepted for publication in Ap
Dijet Production at Hadron Colliders in Theories with Large Extra Dimensions
We consider the production of high invariant mass jet pairs at hadron
colliders as a test for TeV scale gravitational effects. We find that this
signal can probe effective Planck masses of about 10 TeV at the LHC with center
of mass energy of 14 TeV and 1.5 TeV at the Tevatron with center of mass energy
of 2 TeV. These results are compared to analogous scattering processes at
leptonic colliders.Comment: 15 pages with 3 figure
Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation
Calculations of reaction rates for the third-order QED process of photon
splitting in strong magnetic fields traditionally have employed either the
effective Lagrangian method or variants of Schwinger's proper-time technique.
Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation
via an S-matrix formulation in the Landau representation. Advantages of such a
formulation include the ability to compute rates near pair resonances above
pair threshold. This paper presents new developments of the Landau
representation formalism as applied to photon splitting, providing significant
advances beyond the work of Mentzel et al. by summing over the spin quantum
numbers of the electron propagators, and analytically integrating over the
component of momentum of the intermediate states that is parallel to field. The
ensuing tractable expressions for the scattering amplitudes are satisfyingly
compact, and of an appearance familiar to S-matrix theory applications. Such
developments can facilitate numerical computations of splitting considerably
both below and above pair threshold. Specializations to two regimes of interest
are obtained, namely the limit of highly supercritical fields and the domain
where photon energies are far inferior to that for the threshold of
single-photon pair creation. In particular, for the first time the
low-frequency amplitudes are simply expressed in terms of the Gamma function,
its integral and its derivatives. In addition, the equivalence of the
asymptotic forms in these two domains to extant results from effective
Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
- …