28 research outputs found

    Anisotropic compression in the high pressure regime of pure and Cr-doped vanadium dioxide

    Full text link
    We present structural studies of V1−x_{1-x}Crx_xO2_2 (pure, 0.7% and 2.5% Cr doped) compounds at room temperature in a diamond anvil cell for pressures up to 20 GPa using synchrotron x-ray powder diffraction. All the samples studied show a persistence of the monoclinic M1M_1 symmetry between 4 and 12 GPa. Above 12 GPa, the monoclinic M1M_1 symmetry changes to isostructural MxM_x phase (space group P21/cP2_1/c) with a significant anisotropy in lattice compression of the bb-cc plane of the M1M_{1} phase. This behavior can be reconciled invoking the pressure induced charge-delocalization

    Population Inversion in Monolayer and Bilayer Graphene

    Get PDF
    The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, population inversion across the Dirac point has been observed directly by time- and angle-resolved photoemission spectroscopy (tr-ARPES), revealing a relaxation time of only ~ 130 femtoseconds. This severely limits the applicability of single layer graphene to, for example, Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived population inversion in bilayer graphene. The effect is attributed to the small band gap found in this compound. We propose a microscopic model for these observations and speculate that an enhancement of both the pump photon energy and the pump fluence may further increase this lifetime.Comment: 18 pages, 6 figure

    Witnessing Light-Driven Entanglement using Time-Resolved Resonant Inelastic X-Ray Scattering

    Full text link
    Characterizing and controlling entanglement in quantum materials is crucial for next-generation quantum technologies. However, defining a quantifiable figure of merit for entanglement in a material is theoretically and experimentally challenging. At equilibrium, the presence of entanglement can be diagnosed by extracting entanglement witnesses from spectroscopies and extending this approach to nonequilibrium states could lead to the discovery of novel dynamical phenomena. Here, we propose a systematic approach to quantify the time-dependent quantum Fisher information and entanglement depth of transient states of quantum materials through time-resolved resonant inelastic x-ray scattering, a recently developed solid-state pump-probe technique. Using a quarter-filled extended Hubbard model as an example, we benchmark the efficiency of this approach and predict a light-enhanced quantum entanglement, due to the proximity to a phase boundary. Our work sets the stage for experimentally witnessing and controlling entanglement in light-driven quantum materials via solid-state accessible ultrafast spectroscopic measurements.Comment: 11 pages, 6 figure

    Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS)

    Get PDF
    One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, χ(q,ω)\chi({\bf q},\omega). The imaginary part, χ′′(q,ω)\chi''({\bf q},\omega), defines the fundamental bosonic charge excitations of the system, exhibiting peaks wherever collective modes are present. χ\chi quantifies the electronic compressibility of a material, its response to external fields, its ability to screen charge, and its tendency to form charge density waves. Unfortunately, there has never been a fully momentum-resolved means to measure χ(q,ω)\chi({\bf q},\omega) at the meV energy scale relevant to modern elecronic materials. Here, we demonstrate a way to measure χ\chi with quantitative momentum resolution by applying alignment techniques from x-ray and neutron scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS). This approach, which we refer to here as "M-EELS," allows direct measurement of χ′′(q,ω)\chi''({\bf q},\omega) with meV resolution while controlling the momentum with an accuracy better than a percent of a typical Brillouin zone. We apply this technique to finite-q excitations in the optimally-doped high temperature superconductor, Bi2_2Sr2_2CaCu2_2O8+x_{8+x} (Bi2212), which exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES and STM experiments. Our study defines a path to studying the long-sought collective charge modes in quantum materials at the meV scale and with full momentum control.Comment: 26 pages, 10 sections, 7 figures, and an appendi

    Phonon-pump XUV-photoemission-probe in graphene: evidence for non-adiabatic heating of Dirac carriers by lattice deformation

    Get PDF
    We modulate the atomic structure of bilayer graphene by driving its lattice at resonance with the in-plane E1u lattice vibration at 6.3um. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultra-violet (XUV) pulses, we measure the response of the Dirac electrons near the K-point. We observe that lattice modulation causes anomalous carrier dynamics, with the Dirac electrons reaching lower peak temperatures and relaxing at faster rate compared to when the excitation is applied away from the phonon resonance or in monolayer samples. Frozen phonon calculations predict dramatic band structure changes when the E1u vibration is driven, which we use to explain the anomalous dynamics observed in the experiment.Comment: 16 pages, 8 figure

    Snapshots of non-equilibrium Dirac carrier distributions in graphene

    Full text link
    The optical properties of graphene are made unique by the linear band structure and the vanishing density of states at the Dirac point. It has been proposed that even in the absence of a semiconducting bandgap, a relaxation bottleneck at the Dirac point may allow for population inversion and lasing at arbitrarily long wavelengths. Furthermore, efficient carrier multiplication by impact ionization has been discussed in the context of light harvesting applications. However, all these effects are difficult to test quantitatively by measuring the transient optical properties alone, as these only indirectly reflect the energy and momentum dependent carrier distributions. Here, we use time- and angle-resolved photoemission spectroscopy with femtosecond extreme ultra-violet (EUV) pulses at 31.5 eV photon energy to directly probe the non-equilibrium response of Dirac electrons near the K-point of the Brillouin zone. In lightly hole-doped epitaxial graphene samples, we explore excitation in the mid- and near-infrared, both below and above the minimum photon energy for direct interband transitions. While excitation in the mid-infrared results only in heating of the equilibrium carrier distribution, interband excitations give rise to population inversion, suggesting that terahertz lasing may be possible. However, in neither excitation regime do we find indication for carrier multiplication, questioning the applicability of graphene for light harvesting. Time-resolved photoemission spectroscopy in the EUV emerges as the technique of choice to assess the suitability of new materials for optoelectronics, providing quantitatively accurate measurements of non-equilibrium carriers at all energies and wavevectors.Comment: 16 pages, 7 figure
    corecore