209 research outputs found

    Fluctuation limits of strongly degenerate branching systems

    Full text link
    Functional limit theorems for scaled fluctuations of occupation time processes of a sequence of critical branching particle systems in Rd\R^d with anisotropic space motions and strongly degenerated splitting abilities are proved in the cases of critical and intermediate dimensions. The results show that the limit processes are constant measure-valued Wienner processes with degenerated temporal and simple spatial structures.Comment: 15 page

    Rheumatoid synovial fluid interleukin-17-producing CD4 T cells have abundant tumor necrosis factor-alpha co-expression, but little interleukin-22 and interleukin-23R expression

    Get PDF
    Introduction\ud Th17 cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to systematically analyse the phenotype, cytokine profile and frequency of interleukin-17 (IL-17) producing CD4-positive T cells in mononuclear cells isolated from peripheral blood, synovial fluid and synovial tissue of RA patients with established disease, and to correlate cell frequencies with disease activity. \ud \ud Methods\ud Flow cytometry was used to analyse the phenotype and cytokine production of mononuclear cells isolated from peripheral blood (PBMC) (n = 44), synovial fluid (SFMC) (n = 14) and synovium (SVMC) (n = 10) of RA patients and PBMC of healthy controls (n = 13). \ud \ud Results\ud The frequency of IL-17-producing CD4 T cells was elevated in RA SFMC compared with RA PBMC (P = 0.04). However, the frequency of this population in RA SVMC was comparable to that in paired RA PBMC. The percentage of IL-17-producing CD4 T cells coexpressing tumor necrosis factor alpha (TNFα) was significantly increased in SFMC (P = 0.0068). The frequency of IFNγ-producing CD4 T cells was also significantly higher in SFMC than paired PBMC (P = 0.042). The majority of IL-17-producing CD4 T cells coexpressed IFNγ. IL-17-producing CD4 T cells in RA PBMC and SFMC exhibited very little IL-22 or IL-23R coexpression. \ud \ud Conclusions\ud These findings demonstrate a modest enrichment of IL-17-producing CD4 T cells in RA SFMC compared to PBMC. Th17 cells in SFMC produce more TNFα than their PBMC counterparts, but are not a significant source of IL-22 and do not express IL-23R. However, the percentage of CD4 T cells which produce IL-17 in the rheumatoid joint is low, suggesting that other cells may be alternative sources of IL-17 within the joints of RA patients. \ud \u

    Queer activism in Taiwan: an emergent rainbow coalition from the assemblage perspective

    Get PDF
    A social movement for sexual and gender minorities (the Movement) emerged in Taiwan around the 1990s after the abolition of martial law in 1987. This article, drawing on Deleuze’s assemblage theory, looks at how activists negotiate and compete over constructing the discourses of sexual rights and citizenship in a context of democratic transition. With the recent ‘Renaissance’ of conservatism, which combines Confucianism and Christianity, the Movement has been thus de- and reterritorialised in response, and such a process has brought to the fore a rainbow coalition – a larger composition of assemblage rather than simply a descriptor. Gaining greater leverage and influence on society, the coalition, based on the pursuit of self-determination and self-liberation, has inversely provided soil for a cosmopolitan identity of Taiwaneseness to grow

    Survival dimensionality reduction (SDR): development and clinical application of an innovative approach to detect epistasis in presence of right-censored data

    Get PDF
    Contains fulltext : 89126.pdf (publisher's version ) (Open Access)BACKGROUND: Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. RESULTS: The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the Fc gamma RIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. CONCLUSIONS: Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. Availability: http://sourceforge.net/projects/sdrproject/

    Enhancing Oral Vaccine Potency by Targeting Intestinal M Cells

    Get PDF
    The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells

    Кинетика восстановления железа при восстановительной плавке рудоугольных окатышей

    Get PDF
    Исследовано влияние интенсивности теплообмена на кинетику восстановления железа в процессе плавки рудоугольных окатышей. Показано, что с ростом интенсивности теплообмена повышается скорость восстановительных процессов. Вследствие роста коэффициента теплообмена увеличивается глубина восстановленного слоя окатыша, существенно изменяются его структура и химический состав образующейся металлической фазы.Досліджено вплив інтенсивності теплообміну на кінетику відновлення заліза в процесі плавки рудовугільних окатишів. Показано, що при зростанні інтенсивності теплообміну підвищується швидкість відновлювальних процесів. Внаслідок зростання коефіцієнту теплообміну збільшується глибина відновленого шару окатиша, суттєво змінюються його структура та хімічний склад металевої фази, що утворюється.Influence of intensity of heat exchange is investigational on kinetics reduction of iron in the process of melting ore-coal pellets. It is rotined that speed of reduction processes rises with growth of intensity of heat exchange. Because of growth of coefficient of heat exchange the depth of the recovered layer of pellet is increased, his structure and chemical composition of appearing metallic phase changes substantially

    Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms

    Get PDF
    The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation
    corecore