1,349 research outputs found
Reframing Library Student Employment as a High-Impact Practice: Implications from Case Studies
The purpose of this paper is to discuss how academic libraries can directly contribute to campus student success initiatives through student employment programs. Case studies from the perspectives of two supervisors demonstrate how library student employment programs can intentionally incorporate the characteristics of High-Impact Practices. This paper builds upon a previously published systematic review of the academic library literature on student employment, which found a significant gap in the discussion of employment as a mechanism for learning and retention. This paper aims to address this gap by focusing on practical applications for creating more learner-centered student employment programs
Convolutional Radio Modulation Recognition Networks
We study the adaptation of convolutional neural networks to the complex
temporal radio signal domain. We compare the efficacy of radio modulation
classification using naively learned features against using expert features
which are widely used in the field today and we show significant performance
improvements. We show that blind temporal learning on large and densely encoded
time series using deep convolutional neural networks is viable and a strong
candidate approach for this task especially at low signal to noise ratio
Nitric oxide modulates the angiogenic phenotype of middle-T transformed endothelial cells.
The role of nitric oxide (NO) in the induction of angiogenesis was evaluated in a murine heart endothelioma cell line (H.end.FB) carrying the mT oncogene. Two clonal derivatives of H.end.FB, H80 and H73, exhibiting different NO synthase (NOS) activities were selected and used in the study. The relationship among NOS activity and tumor cell behaviour (growth, and angiogenic capacity) and the molecular control of gene expression were investigated. H.end.FB and H80 on one side and H73 on the other side exhibited the highest and lowest NOS activity, respectively. Cell growth was inversely correlated to the amount of NO produced by the cell lines. Conversely, in the avascular rabbit cornea assay, H.end.FB and H80 cells were strongly angiogenic, while H73 were poorly angiogenic, indicating that the ability of the cells to induce neovascularization was associated with the extent of NO produced. Consistently, systemic administration to rabbits of the NOS inhibitor N(w)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the angiogenicity of H.end.FB cells. RT-PCR evidenced that H.end.FB expressed mRNA for TGF-beta1 and all VEGF isoforms, VEGF165 being predominantly expressed. NOS inhibition reduced the basal expression of VEGF isoforms, while it markedly potentiated TGF-beta1 expression. These results indicate that the endogenous production of NO in tumor cells can serve as an autocrine/paracrine signalling mechanism of progression, by controlling angiogenic factor/modulator expressio
A study on the VEGFR2-ligand multi-physics interactions in Angiogenesis.
Tumorgrowthissustainedbyangiogenesis,i.e. theformationofnewbloodvesselsfrompre-existing ones. Angiogenesis is modulated by the interaction between tyrosine kinase receptors (TKRs), expressed by endothelial cells (ECs), and extracellular ligands, produced by tumor cells. This interaction triggers the activation of intracellular signaling cascades and kinetic processes, including cell deformationandadhesion,whicheventuallycausecelldivisionandproliferation. VascularEndothelial Growth Factor Receptor-2 (VEGFR2) is a pro-angiogenic receptor expressed on ECs. Ligand stimulation induces the polarization of ECs and the relocation of VEGFR2 in cell protrusion or in the basal aspect in cells plated on ligand enriched extracellular matrix (ECM) [1]. EC response to angiogenic growth factors is regulated by distinct sets of inputs conveyed by TRKs and different co-receptors including integrins, membrane proteins that are responsible of stress fibers formation and cell contractility [2]. Although biochemical pathways following VEGFR2 activation are well established, knowledge about the receptor dynamics on the plasma membrane remains limited. A multi-physics model has been developed [3] to describe: i) the diffusion of VEGFR2 on the cellularmembrane;ii)thechemicalkineticsoftheligand-receptorbindingreaction;iii)themechanical adhesion and spreading of the cell onto a ligand-rich extracellular substrate, in finite strain. The identification of the multi-physics interactions that regulate receptor polarization could open new perspectives to develop innovative anti-angiogenic strategies through the modulation of EC activation
Heparan Sulfate Proteoglycans Mediate the Angiogenic Activity of the Vascular Endothelial Growth Factor Receptor-2 Agonist Gremlin.
OBJECTIVE: Heparan sulfate proteoglycans (HSPGs) modulate the interaction of proangiogenic heparin-binding vascular endothelial growth factors (VEGFs) with signaling VEGF receptor-2 (VEGFR2) and neuropilin coreceptors in endothelial cells (ECs). The bone morphogenic protein antagonist gremlin is a proangiogenic ligand of VEGFR2, distinct from canonical VEGFs. Here we investigated the role of HSPGs in VEGFR2 interaction, signaling, and proangiogenic capacity of gremlin in ECs.
METHODS AND RESULTS: Surface plasmon resonance demonstrated that gremlin binds heparin and heparan sulfate, but not other glycosaminoglycans, via N-, 2-O, and 6-O-sulfated groups of the polysaccharide. Accordingly, gremlin binds HSPGs of the EC surface and extracellular matrix. Gremlin/HSPG interaction is prevented by free heparin and heparan sulfate digestion or undersulfation following EC treatment with heparinase II or sodium chlorate. However, at variance with canonical heparin-binding VEGFs, gremlin does not interact with neuropilin-1 coreceptor. On the other hand, HSPGs mediate VEGFR2 engagement and autophosphorylation, extracellular signaling-regulated kinase(1/2) and p38 mitogen-activated protein kinase activation, and consequent proangiogenic responses of ECs to gremlin. On this basis, we evaluated the gremlin-antagonist activity of a panel of chemically sulfated derivatives of the Escherichia coli K5 polysaccharide. The results demonstrate that the highly N,O-sulfated derivative K5-N,OS(H) binds gremlin with high potency, thus inhibiting VEGFR2 interaction and angiogenic activity in vitro and in vivo.
CONCLUSIONS: HSPGs act as functional gremlin coreceptors in ECs, affecting its productive interaction with VEGFR2 and angiogenic activity. This has allowed the identification of the biotechnological K5-N,OS(H) as a novel angiostatic gremlin antagonist
An analysis on decentralized adaptive MAC protocols for Cognitive Radio networks
The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the Cognitive Radio (CR) Technology which is an opportunistic network that senses the environment, observes the network changes, and then using knowledge gained from the prior interaction with the network, makes intelligent decisions by dynamically adapting their transmission characteristics. In this paper some of the decentralized adaptive MAC protocols for CR networks have been critically analyzed and a novel adaptive MAC protocol for CR networks, DNG-MAC which is decentralized and non-global in nature, has been proposed. The results show the DNG-MAC out performs other CR MAC protocols in terms of time and energy efficiency
IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk.
In vivo IL-12-dependent tumor inhibition rests on the ability of IL-12 to activate a CD8-mediated cytotoxicity, inhibit angiogenesis, and cause vascular injury. Although in vivo studies have shown that such inhibition stems from complex interactions of immune cells and the production of IFN-gamma and other downstream angiostatic chemokines, the mechanisms involved are still poorly defined. Here we show that IL-12 activates an anti-angiogenic program in Con A-activated mouse spleen cells (activated spc) or human PBMC (activated PBMC). The soluble factors they release in its presence arrest the cycle of endothelial cells (EC), inhibit in vitro angiogenesis, negatively modulate the production of matrix metalloproteinase-9, and the ability of EC to adhere to vitronectin and up-regulate ICAM-1 and VCAM-1 expression. These effects do not require direct cell-cell contact, yet result from continuous interaction between activated lymphoid cells and EC. We used neutralizing Abs to show that the IFN-inducible protein-10 and monokine-induced by IFN-gamma chemokines are pivotal in inducing these effects. Experiments with nu/nu mice, nonobese diabetic-SCID mice, or activated spc enriched in specific cell subpopulations demonstrated that CD4(+), CD8(+), and NK cells are all needed to mediate the full anti-angiogenetic effect of IL-12
Supplementary Material to “Distributed Consensus-based Weight Design for Cooperative Spectrum Sensing”
Abstract—This material is a supplement to the paper “Distributed Consensus-based Weight Design for Cooperative Spectrum Sensing”. Section 1 offers related literature review on cooperative spectrum sensing and consensus algorithms. Section 2 presents related notations and models of the consensus-based graph theory. Section 3 offers further analysis of the proposed spectrum sensing scheme including detection threshold settings and convergence properties in terms of detection performance. Section 4 presents the proofs for the convergence of the proposed consensus algorithm, and discusses the convergence of the proposed algorithm under random link failure network models. Section 5 shows additional simulation results
- …
