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Supplementary Material to “Distributed
Consensus-based Weight Design for

Cooperative Spectrum Sensing”
Wenlin Zhang, Yi Guo, Hongbo Liu, Yingying Chen, Zheng Wang, and Joseph Mitola III

Abstract—This material is a supplement to the paper “Distributed Consensus-based Weight Design for Cooperative Spectrum
Sensing”. Section 1 offers related literature review on cooperative spectrum sensing and consensus algorithms. Section 2
presents related notations and models of the consensus-based graph theory. Section 3 offers further analysis of the proposed
spectrum sensing scheme including detection threshold settings and convergence properties in terms of detection performance.
Section 4 presents the proofs for the convergence of the proposed consensus algorithm, and discusses the convergence of the
proposed algorithm under random link failure network models. Section 5 shows additional simulation results.

Index Terms—Cooperative spectrum sensing, Weighted average consensus, Cognitive radio networks.
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1 RELATED LITERATURE REVIEW

1.1 Related Work in Cooperative Spectrum Sens-
ing

The main advantage of cooperative spectrum sensing is to
enhance the sensing performance by exploiting the observa-
tion diversity of spatially located SUs [1]. By cooperation,
CR users can share their sensing information to make a
combined decision which is more accurate than individual
decisions. Cooperative sensing usually contains two stages:
sensing and fusion. In the sensing stage, each SU makes
the measurement using appropriate detecting techniques.
Among all types of detectors, energy detector is widely
applied because it requires lower design complexity and
no priori knowledge of primary users, compared to other
techniques such as matched filter detection or cyclosta-
tionary detection [2]. In the fusion stage, the SU network
cooperatively combines the detecting statistics throughout
the network and the final decision is made using global in-
formation. Among the fusion techniques, different measure-
ment combining methods have been considered including
hard bit combining [3], soft gain combining [4], to name a
few.
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The key element of cooperative sensing is the coopera-
tion scheme, which decides the SU network structure and
the detecting performance. Centralized cooperative sens-
ing and relay-assisted cooperative sensing are two major
schemes in literature [1]. Centralized cooperative sensing
[5] lets all SUs report their measurement information to a
centralized fusion center, then a global decision is made at
the fusion center according to certain measurement com-
bining methods. Relay-assisted cooperative sensing [1][6]
is a multi-hop cooperation scheme which makes use of
the strong sensing channels and strong reporting channels
among the SU network in order to improve the overall
performance. Relay-assisted sensing can be either central-
ized with a fusion center, or distributed without a fusion
center. Centralized cooperative spectrum sensing requires
the entire received data be gathered at one place which
may be difficult due to communication constraints [7].
The multi-hop communication of the relay-assisted sensing
may bring extra power cost than one-hop communication,
since all SUs’ sensing data need to be relayed from the
network nodes to the fusion center or detection node. In
addition, the multi-hop communication paths may degrade
the sensing data quality and affect the detection perfor-
mance significantly compared to one-hop communication
scenarios. Other factors such as communication channel
selection schemes and sensing data coding schemes also
need to be considered [8] in the relay assisted cooperative
sensing to overcome the disadvantage of the multi-hop
paths.

Distributed cooperative sensing first appears in [3] with
broadcasting schemes. After measurement, each SU broad-
casts its own decision to all SU nodes in the network, and
the final decision is decided by OR rule. Very recently,
bio-inspired consensus scheme is introduced to spectrum
sensing in [9][10] for distributed measurement fusion and
soft combining. Consensus-based spectrum sensing is a
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biologically inspired approach learned from swarming be-
haviors of fish schools and bird fleets. The consensus-
based cooperation features self-organizable and scalable
network structure and only needs one-hop communication
among local neighbors. Recent research work [11] applies
belief propagation to distributed spectrum sensing [11],
which advances the sensing stage for heterogenous radio
environment.

The fusion scheme of the sensing data from the SU
network also contribute to the detection performance. There
are hard bit combining such as OR rule combining and
soft combining including equal gain combing and weighted
gain combining. Hard bit combining adopts the decision
bit from each SU to achieve global detection, which is less
effective compared to soft combing schemes taking average
of the statistics from all the SUs. Generally speaking, equal
gain combing is to compute the average of the measured
statistics of the SU network while weighted gain combining
computes the weighted average considering the measure-
ment channel conditions. Therefore, weighted combining
offers better detection performance under various channel
conditions such as fading and shadowing.

The future cognitive radio networks will most probably
consist of smart phones, tablets and laptops moving with the
swarming behaviors of people. Therefore, consensus-based
spectrum sensing reveals great potential for future devel-
opment of distributed cognitive radio networks. However,
the existing consensus-based fusion algorithms [12][10]
only ensure equal gain combining of local measurements,
which is incomparable with centralized weighted combining
approaches [4]. To make the distributed consensus-based
spectrum sensing more robust to practical channel condi-
tions and link failures, we need to develop new distributed
weighted fusion algorithms which are missing in the current
literature.

1.2 Related Work in Average Consensus Algo-
rithm

The consensus algorithm was studied in [13] for modeling
decentralized decision making and parallel computing. The
main benefit of consensus is ensuring each node to hold the
global average of the initial values throughout the network
using local communication between one-hop neighboring
nodes. Two decades later, consensus algorithm is introduced
to multi-agent systems [14][15]. In [14], Jadbabaie et al.
analyze the convergence conditions of a biologically-rooted
discrete time consensus model, but the convergence value is
not specified. Olfati-Saber and Murray give the conditions
for average consensus convergence of continuous time
consensus model in [15]. Since the average consensus prob-
lem has strong impact on distributed networked systems,
it increasingly attracts research attention on decentralized
estimation [16], filtering [17], and detection [18], etc.. For
signal processing applications, communication constraints
and the convergence rate become crucial for performance
improvement. Typical problems include communication
topology design and optimization [19], convergence rate

analysis and optimization [20]. Interested readers are re-
ferred to the review papers [21][22] for the complete history
of consensus algorithm development.

Compared to the extensively studied average consen-
sus, much less research attention is paid to weighted
average consensus. As stated in [21], weighted average
consensus algorithm is modeled by asymmetric matrices
which makes the mathematical tools for average consensus
algorithm inapplicable, and it is difficult to predict the
convergence value on dynamic communication channels.
However, weighted average consensus algorithm in the
fusion process of spectrum sensing can achieve weighted
gain combining without a fusion center, which advances the
consensus-based spectrum sensing significantly. Therefore,
it is important to develop solid theoretical analysis of
weighted average consensus algorithms on dynamic com-
munication topologies.

2 PRELIMINARIES ON GRAPH THEORY NO-
TATIONS AND SU NETWORK MODELS

In the information fusion stage, SUs communicate with
their local neighbors through the SU network and adopt
the consensus iteration to obtain the global measurement
statistics. For convenience, we assign an index set I =
{1, 2, ..., n} for the SU network formed by n SUs.

To model the consensus algorithm, we adopt the standard
undirected graph model for the bidirectional SU commu-
nication network. The SU network is represented by an
undirected graph G = (E ,V), where V = {vi|i ∈ I} is
a finite nonempty set of nodes. We refer the ith node as
the ith SU. The two names, SU and node, will be used
alternatively. The edge set E = {eij = (vi, vj)|i, j ∈ I}.
The set of neighbors of node i is denoted by Ni =
{j : eij ∈ E}. A path in G consists of a sequence of
nodes v1, v2, ..., vl, l ≥ 2, satisfying (em,m+1) ∈ E ,∀1 ≤
m ≤ l − 1. The graph G is connected if any two distinct
nodes in G are connected by a path. When considering
the directed graph (i.e. digraph), we refer to vi and vj
as the tail and head of a directed edge eij = (vi, vj),
which represents the unidirectional communication link
between two neighboring SUs. A digraph is called strongly
connected if it is possible to reach any node starting from
any other node following the edge directions.

In the case of the time-varying communication links, we
model the SU network by G(k) = (E(k),V), where E(k)
is the set of active edges at time k. Let Ni(k) = {j ∈
V|{i, j ∈ E(k)}}, and di(k) = |Ni(k)| denote the degree
(number of neighbors) of node i at time k.

Let Gi = (Ei,V), i = 1, . . . , r, denote a finite collection
of graphs with common vertex set V . Their union is a graph
G with the same vertex set and an edge set that is the union
of the E ′is, i.e., G =

⋃r
i=1 Gi = (

⋃r
i=1 Ei,V). The set of

undirected graphs {G1, . . . ,Gr} is called jointly connected
if their union is a connected graph.

In consensus network modeling, the Laplacian matrix
L ∈ Rn×n of the communication graph G formed by the
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secondary user nodes is defined as

lij =

 di, if i = j,
−1, if i 6= j, j ∈ Ni,
0, otherwise,

(1)

where di = |Ni| is the degree of node i. The maximum
node degree is denoted as

dmax = max
i
|Ni|. (2)

It’s easy to see, the undirected graph Laplacian matrix L
is symmetric and has the left and right eigenvector 1T and
1 associated with the eigenvalue 1, respectively. For the
Laplacian matrix of strongly connected graphs, we have
the following lemma:

Lemma 1: [21] Let G be a strongly connected digraph
with n nodes and the maximum node degree ∆. Then, the
associated Perron matrix W defined as W = I − αL with
parameter 0 < α < 1

dmax
satisfies the following properties.

i) W is a row stochastic nonnegative matrix with a simple
eigenvalue of 1; ii) W has the simple eigenvalue λ1 = 1
as the spectral radius ρ(W ); iii) All eigenvalues of W are
in a unit circle |λi| < 1, i = 2, . . . , n.

In the context of consensus-based spectrum sensing,
for the n SUs modeled by the graph G, the ith SU is
assigned a state variable xi, i ∈ I. The ith SU uses xi
for representing its measurement statistics of the energy
detection. By reaching consensus, we mean the individual
state xi asymptotically converge to a common value x∗,
i.e., xi(k)→ x∗ as k →∞,∀i ∈ I, where k is the discrete
time step, k = 0, 1, 2, ..., and xi(k) is updated based on the
previous states of node i and its neighbors.

3 WEIGHTED CONSENSUS-BASED TWO
STAGE SENSING

3.1 Convergence in terms of Detection Probability
The distributed fusion based on the Algorithm 1 (Eq. (15))
in the main paper is an iterative process that completes after
the convergence is reached. In this subsection, we charac-
terize the convergence of the proposed fusion algorithm in
terms of the detection probability. If we write the algorithm
in the compact form:

x(k + 1) = W (k)x(k), (3)

where x = [x1, . . . , xn]T , and W (k) is the iteration
transition matrix at time step k. We will prove by Theorem
1 and 2 in the main file that limk→∞

∏k
i=1W (i) = 1δT

δT 1
and limk→∞ wij = δj , where δ = [δ1, δ2, . . . , δn]T , and δi
is the weighting ratio set by the ith SU.

If the SU network communication topologies are jointly
connected, all the SUs’ decision statistics will reach con-
sensus. The final convergence value is:

xi(k)→ x∗ =

∑n
i=1 δixi(0)∑n
j=1 δi

as k →∞,∀i ∈ I. (4)

If we assume that xi(0) follows a normal distribution
as discussed in Section 2.1 of the main paper, we have

xi(k) = [W ]ix(0), where [W ]i denotes the ith row of the
matrix

∏k
i=1W (k). Therefore, xi(k) is a weighted average

of Gaussian distributed random variables, which is also
Gaussian distributed, i.e.,

H0 : x(k)i ∼ N

m
n∑

j=1

wijσ
2
i ,

√√√√2m

n∑
j=1

w2
ijσ

4
i


H1 : x(k)i ∼ N


n∑

j=1

wij(m+ ηi)σ
2
i ,

√√√√ n∑
j=1

w2
ij2(m+ 2ηi)σ4

i


(5)

where wij is the element of matrix
∏k
i=1W (k) at the ith

row and jth column. Thus, the probability of detection at
the ith SU at time k is given by

Pf (k)i = Q(λ;µ0, ν0) (6)
Pd(k)i = Q(λ;µ1, ν1) (7)

where Q(·) is the complementary cumulative distribution
function of Gaussian variable, λ is the decision threshold,
and

{µ0, ν0} =

m
n∑

j=1

wijσ
2
i ,

√√√√2m

n∑
j=1

w2
ijσ

4
i


{µ1, ν1} =


n∑

j=1

wij(m+ ηi)σ
2
i ,

√√√√ n∑
j=1

w2
ij2(m+ 2ηi)σ4

i


(8)

Practically, it’s unnecessary to process the algorithm for the
infinite iteration. We can use Eqn. (7) with respect to the
time step k as an evaluation for the transient performance
in finite steps of the consensus based cooperative spectrum
sensing schemes.

Remark 1: From Eqn (6)(7)(8), we can see the choice of
the threshold λ depends on the whole network connections
and the channel conditions of each SU node.

3.2 Detection Threshold for Each SU

Since the converged combining (4) is independent of SU
network structure, the threshold λ can also be deducted for
each SU independently. Assuming the initial measurements
xi(0) follows the Gaussian distribution, x∗ =

∑n
i=1 δixi(0)∑n

i=1 δi
is also Gaussian distributed. Therefore, the false alarm (6)
and detection rate (7) are still applicable when we set ωi =∑n

i=1 δixi(0)∑n
i=1 δi

in the parameter setting (8).
For each SU to compute the detection threshold λ, we

can adopt the inverse of the false alarm (6) with parameters
in (8) to obtain λ = Q−1(Pf , µ0, ν0). In Section 3.2 of
the main paper, we show that under hypothesis H0 with
the absence of PU’s signal, the fusion weight of each SU
δi ≈ 1/σ2

i , where σ2
i is the variance of measurement

noise mainly depends on measurement devices and general
wireless environment. Although µ0 and ν0 depends on σi
from all SU’s, that global information can be obtained
offline or during the calibration process. If the SU network
size is fixed, and all the SUs have similar measurement
devices, it’s not a strong assumption to further assume
all the SU’s have the same measurement noises under
H0. Then, the threshold can be set by each SU without
centralized communication.
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4 CONVERGENCE ANALYSIS OF WEIGHTED
AVERAGE CONSENSUS ALGORITHM

4.1 Convergence Proof under Dynamic Communi-
cation Channels

This subsection provides the theoretic proof for Theorem
2 of the main paper. For convenience, we restate the setup
as follows:

For a network of n secondary users, there are a finite
number, say a total of r, of possible communication graphs.
We denote the set of all possible graphs by {G1, . . . , Gr},
and the set of corresponding Laplacian matrices and Per-
ron matrices given by {L1, . . . , Lr} and {W1, . . . ,Wr},
respectively. For any 1 ≤ s ≤ r, we have

Ws = I − α∆−1Ls, (9)

where ∆ = diag{δ1, . . . , δn}, and δi is the weighting ratio.
The weighted average consensus algorithm is given by

x(k + 1) = Ws(k)x(k), (10)

where the indices s(k) are integers and satisfy 1 ≤ s(k) ≤
r for all k > 0. Here, we use the notion Ws(k) to denote the
graph sequence in the iteration because the graph sequences
could be stochastic or deterministic. We will use W (k) to
denote the stochastic case later.

Proof: We show that consensus iteration (10) is actu-
ally a paracontraction process under the L∞ norm. Specif-
ically, if we decompose the initial state x(0) in (10) as

x(0) = xc(0) + xd(0), (11)

where xc(0) means consensus vector that xc(k) ∈ span(1),
and xd(0) means the difference vector that xc(0)xc(0)T =
0, then the paracontracting means (10) will contracts the
norm of the state xd(k) in each iteration and xc(k) will
remain fixed. When the iteration goes to infinite, xd(k)
will shrink to zero and x(k) goes to xc(k) which equals to
xc(0).

Before presenting the main proof, we discuss the related
definitions and three lemmas as following:

A matrix M ∈ Rn×n is called paracontracting [23] with
respect to a vector norm ‖ · ‖ if

Mx 6= x⇔ ‖Mx‖ < ‖x‖. (12)

For a matrix M , we denote H(M) as its fixed-point
subspace, i.e., H(M) = {x|x ∈ Rn|Mx = x}. Apparently,
H(M) is M ’s eigenspace associated with the eigenvalue 1.

Lemma 2: [23] Suppose that a finite set of square ma-
trices {W1, . . . ,Wr} are paracontracting. Let {i(k)}∞i=0,
with 1 ≤ i(k) ≤ r, be a sequence of integers, and denote
by J the set of all integers that appear infinitely often
in the sequence. Then for all x(0) ∈ Rn the sequence
of vectors x(k + 1) = Wi(k)x(k), k ≤ 0, has a limit
x∗ ∈

⋂
i∈J H(Wi).

Lemma 3: [16] If a collection of graphs {G1, . . . , Gp}
are jointly connected, then their corresponding Perron ma-
trices satisfy

p⋂
i=1

H(Wi) = H

(
1

p

p∑
i=1

Wi

)
= span(1). (13)

The proof of Lemma 3 follows the same procedure in
the proof of Lemma 2 in [16]. For the jointly connected
collection of possible graphs {G1, . . . , Gr}, r ≥ p, we have

r⋂
i=1

H(Wi) =

p⋂
i=1

H(Wi) = span{1}. (14)

Lemma 4: For any possible graph G, the associated
graph Perron matrix is W = I − α∆−1L, we have
‖W‖∞ ≤ 1. For any graph sequence {G1, . . . , Gk}, k > 0
containing n− 1 collections of jointly connected graph se-
quence, that is {G1, . . . , Gpj}, j = 1, ..., n−1,

∑n−1
j=1 pj =

k, then the matrix

W̃ =

n−1∏
j=1

pj∏
i=1

Wi (15)

is a paracontracting matrix having 1 as the right eigenvector
associated with the simple eigenvalue 1.

To prove Lemma 4, we firstly show that ‖W̃‖∞ ≤ 1,
which is equivalent to the fact that the maximum value in
the network is non-increasing and the minimum value in the
network is non-decreasing. Under any possible undirected
graph G and the associated Perron matrix W = I−ε∆−1L
defined the same as the form of (9), if we assume the ith

SU holds the maximum value in the network, we have the
algorithm (10) in distributed form as

xmax(k + 1) = xmax(k) +
α

δi

∑
j∈Ni

(xj(k)− xmax(k))

= (1− α |Ni|
δi

)xmax(k) +
α

δi

∑
j∈Ni

xj(k)

because 0 < α < 1
n , n ≥ Ni and δi > 1, we have

0 < |Ni|α
δi

< 1, which means xmax is non-increasing in
every step of the iteration and xmax always stays in the
convex hull formed by xmax and its local neighbors, no
matter how the graphs are sequenced. Following the same
procedure, we can prove xmin is non-decreasing in every
step of the iteration and xmin always stays in the convex
hull formed by xmin and its local neighbors. Therefore, we
have ‖W‖∞ ≤ 1 which leads to ‖W̃‖∞ ≤

∏q
i=1 ‖Wi‖∞ ≤

1, where q =
∑n−1
j=1 pj .

Meanwhile, from the above analysis we obtain

xmax(k + 1) ≤ (1− α |Ni|
δi

)xmax(k) +
α

δi

∑
j∈Ni

xj(k)

If xmax has a neighbor which holds non-maximum value,
then we obtain

xmax(k + 1) < (1− α |Ni|
δi

)xmax(k) +
α

δi
|Ni|xmax(k)

< xmax(k)
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It means for each iteration of algorithm (10), if the
xmax communicates with non-maximum nodes, xmax is
strictly decreasing. Also, if xmin communicates with non-
minimum nodes, xmin is strictly increasing.

For any state x(k), assume there are l out of n nodes
(0 < l < n) holding maximum value and other n − l
nodes hold non-maximum values. Then, at least 1 out of
l maximum nodes will strictly decrease when a jointly
connected graph sequence happens from the k step to
k + 1 step. If no maximum nodes strictly decrease after
a jointly connected graph sequence, then, it means none
of the maximum nodes communicates with other non-
maximum nodes and the graph sequence is not jointly
connected. Therefore, for state x(k), 1 jointly connected
graph sequence happens from k step, at least 1 out of
l maximum nodes decreases, and the network will have
l − 1 maximum nodes after. By induction, after l − 1
jointly connected graph sequences happen, all the l − 1
maximum nodes will strictly decreasing. For a network
with n nodes, there are at most n − 1 maximum nodes,
and after n − 1 jointly graph sequences, all the n − 1
maximum nodes will strictly decrease. Same reason, after
n− 1 jointly connected graph sequences, all the minimum
nodes will strictly increase. It means ‖W̃x‖∞ < ‖x‖∞ for
x 6∈ span(1). Since all the Ws(k) defined in (9) has 1 as
right eigenvector with eignenvalue 1. Thus, we have W̃ is
paracontracting according to the definition Eqn.(12). This
finishes the proof of Lemma 4.

Under the condition that the collection of the jointly
connected graphs occurs infinitely, we can write the ma-
trix sequence as

∏k
i=1Ws(k) =

∏h
j=1 W̃j , that each W̃j

represents n jointly connected graph sequences. Then W̃j

is paracontracting and
∏k
i=1Ws(k) is a paracontracting

sequence. Then according to Lemma 2, the iteration (10)
will converge to its fixed subspace. Specifically, we can
rewrite the iteration (10) as

xc(k + 1) = Ws(k)xc(k) (16)
xd(k + 1) = Ws(k)xd(k) (17)

where the initial value x(0) = xc(0) + xd(0), xc(0) ∈
span(1) and xc(0)xd(0)T = 0. Then we obtain xc(k+1) =
xc(k) and ‖xd(k + 1)‖∞ < ‖xd(k)‖∞. According to
Lemma 2, when k → ∞, xd(k) → 0 and x(k) → xc(0).
According to Lemma 3, the invariant subspace of

∏
Ws(k)

is decided by the underlying strongly connected graph
Perron matrix of each sub graph sequence. Let us denote as
Wp = 1

p

∑p
i=1Wi for each graph sequence {G1, . . . , Gp}

which contains n − 1 jointly connected graph sequences.
Since we have shown that in iteration (10), each Wp of
a sub graph sequence, has the same simple eigenvalue 1
with same left eigenvector δT = [δ1, . . . , δn] and same right
eigenvector 1. According to the Perron Frobenius Theorem
[24], x → xc(0) = 1δT

δT 1
x(0) =

∑n
i=1 δixi(0)∑n

i=1 δi
1, where

δ = [δ1, . . . , δn]T and δi is the element of the diagonal
matrix ∆. This finishes the proof of Theorem 2 in the main
file.

4.2 Convergence Rate with Random Link Failures

For a SU network denoted as G = (E ,V), we assume
G is a connected undirected graph and E is the set of
realizable edges. We assign each pair of neighboring SUs
the online and offline probabilities at each time step as
Pij and 1 − Pij , respectively. Then, at the arbitrary time
index k, the network of n SUs is modeled by the graph
G(k) = (E(k),V), where E(k) denotes the edge set at
time k.

Then the consensus iteration (10) becomes a random
process and it is modeled as

x(k + 1) = W (k)x(k) (18)

where W (k) is defined as

W (k) = I − α∆−1L(k) (19)

where ∆ = diag{δ1, . . . , δn} satisfies δi ≥ 1,∀i ∈ I, W (k)
and L(k) are the Perron matrix and Laplacian matrix of the
dynamic communication graph G(k) at time k, respectively.
We assume the link failures among the SU network happen
independently, so all L(k)’s, and W (k)’s are independent
and identically distributed. We have the following lemma:

Lemma 5: If the SU network forms a connected undi-
rected communication graph G = (E ,V), each link eij ∈ E
has the online and offline probability as Pij and 1 − Pij ,
where Pij ∈ (0, 1), the stepsize α in Eqn. (19) satisfies
the maximum node degree constraint 0 < α < 1

dmax(G) ,
then the vector sequence {x(k)}∞k=0 in (18) converges
exponentially in the sense that

lim
k→∞

‖E (x(k))− x∗1‖2 = 0. ∀x(0) ∈ Rn×1 (20)

The decay factor of the convergence is given by ρ(W−J1),
where 0 < ρ(W−J1) < 1 is the spectral radius of W−J1,
W = E(W ), and J1 = 1δT

δT 1
, where δ defined as

δ = [δ1, δ2, . . . , δn]T . (21)

Proof: we have the error dynamics of the algorithm
(18) as

x(k + 1)− x∗1 = W (k)x(k)− J1x(0)

=

k∏
j=0

W (j)x(0)− J1x(0). (22)

Since δ and 1 are respectively the left and right eigenvetor
of W (k),∀k ≥ 0, associated with the eigenvalue λ1 = 1,
we have W (k)J1 = J1 and J1W (k) = J1,∀k ≥ 0, which
yield

x(k + 1)− x∗1

= W (k)

k−1∏
j=0

W (j)x(0)− J1
k−1∏
j=0

W (j)x(0),

= W (k)x(k)− J1x(k) = (W (k)− J1)x(k)
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Since W (k)J1 = J1 and J1J1 = J1 we have

x(k + 1)− x∗1 = (W (k)− J1) (x(k)− J1x(0))

=

k∏
j=0

(W (k)− J1) (x(0)− J1x(0))

Since all L(k)’s, and W (k)’s are independent and identi-
cally distributed, we have

E (x(k + 1)− x∗1) = E

 k∏
j=0

(W (k)− J1)

E (x(0)− x∗1)

=

k∏
j=0

E (W (k)− J1) (E(x(0))− x∗1)

=
(
W − J1

)k
(E(x(0))− x∗1),

which yields

‖E(x(k + 1))− x∗1‖2 = ‖
(
W − J1

)k
‖2‖(E(x(0))− x∗1)‖2. (23)

For W = E(W ), we have

W = I − ε∆−1Lp (24)

where Lp is from the link probability, defined as

lpij =


∑n
j=1 Pij , if i = j,

−Pij if i 6= j, and (vi, vj) ∈ E
0 otherwise

.(25)

We can see that Lp is still a Laplacian matrix of a connected
graph with Pij as its link weights. According to Lemma 1,
we have ρ(W − J1) < 1, when α satisfies the maximum
node degree constraint.

According to the famous Gelfand’s formula, ‖(W −
J1)k‖2 has the same growth rate as ρ(W−J1)k as k →∞,
which leads to the exponential convergence of Eqn. (20),
and the decay factor is ρ(W − J1).

Remark 2: The decay factor for the convergence rate
is the so-called spectral gap ρ(W − J1) which relates to
the network topology and the link weights, as well as
the link failure probability matrix Lp. For optimizing the
convergence rate, interested readers can refer to [19], [20],
[25].

Practically, it’s unnecessary for the SU network to reach
the limit in the consensus iteration. We can derive the upper
bound on the iteration number at which all SUs are ε close
to the final convergence value in the probability sense,
which is called ε-convergence in [22].

Theorem 1: Under the same condition of Lemma 5,
∀ε > 0 and k ≥ T (ε), for the iteration (18), we have

Pr{ max
1≤i≤n

|xi(k)− x∗| ≥ ε|Hk} ≤ ε, k ∈ {0, 1} (26)

and

T (ε) ≤ 3/2 log ε−1 + 1/2 log(K)

1− E (‖(W − J1)‖∞)
(27)

where

K =
n∑
i=1

(
2mσ4

i + 4Es|hi|2σ2
i + (mσ2

i + Es|hi|2)2
)

and J1 = 1δT

δT 1
, where δ defined in Eqn. (21), σi is the

measurement noise variance for the ith SU, and Es is the
signal energy and hi is the channel gain defined in Section
2.1 of the main paper.

Proof: Since max1≤i≤n |xi(k)−x∗| = ‖x(k)−x∗‖∞,
we have

Pr{‖x(k)− x∗1‖∞ ≥ ε Hk}
= Pr{‖x(k)− x∗1‖2∞ ≥ ε|H2

k}

≤ E{‖x(k)− x∗1‖2∞|H2
k}

ε2
(28)

where the second equation is from the Markov inequality.
Following the proof of Theorem 5, from Eqn. (23), we have

‖x(k)− x∗1‖2∞ ≤
k∏
i=1

‖(W (k)− J1)‖2k∞‖x(0)‖2∞.(29)

Since W (k)’s are identically and independently distributed,
we have

E(‖x(k)− x∗1‖2∞) ≤ E (‖W − J1‖∞)
2k E(‖x(0)‖2∞) (30)

If we choose a vector x̃ that ‖x̃‖∞ = 1 and δT x̃ = 0,
where δ is defined in Eqn. (21), we have J1x̃ = 0 and
following Lemma 4, we have

‖(W (k)− J1)x̃‖∞ = ‖W (k)x̃‖∞ ≤ ‖x̃‖∞ (31)

when W (k) has 1 as a simple eigenvalue, we have

‖(W (k)− J1)x̃‖∞ < ‖x̃‖∞, (32)

which means

‖(W (k)− J1)‖∞ = max
‖x̃‖∞=1

‖(W (k)− J1)x̃‖∞
‖x̃‖∞

≤ 1 (33)

and

E (‖(W − J1)‖∞) < 1, (34)

we drop the index of W because W (k) are identically
distributed. We also have

‖x(0)‖2∞ ≤ ‖x(0)‖22. (35)

Substitute (30) and (35) into (28), we have

Pr{‖x(k)− x∗1‖∞ ≥ ε|Hk} ≤
E (‖(W − J1)‖∞)2k E{‖x(0)‖22}

ε2

(36)
Let

E (‖(W − J1)‖∞)
2k E{‖x(0)‖2}

ε2
= ε, (37)

we obtain

T (ε) =
3/2 log ε−1 + 1/2 log(E{‖x(0)‖22|Hk})

− log(E (‖(W − J1)‖∞)
(38)

Therefore, we have

T (ε) =
3/2 log ε−1 + 1/2 log(E{‖x(0)‖22|Hk})

− log(E (‖(W − J1)‖∞)
(39)

From the inequality log(1 + u) ≤ u when u is small, let
1 + u = E (‖(W − J1)‖∞), we obtain,

− log E (‖(W − J1)‖∞) ≥ −u = 1− E (‖(W − J1)‖∞) .
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Thus, we have

T (ε) ≤ 3/2 log ε−1 + 1/2 log(E{‖x(0)‖22|Hk})
1− E (‖(W − J1)‖∞)

(40)

Meanwhile, according to Section 2.1 of the main paper, we
have

E(‖x(0)‖22|H0) =

n∑
i=1

E(x2i (0)|H0)

<

n∑
i=1

E(x2i (0)|H1) =

n∑
i=1

(
Var(xi(0)|H1) + E2(xi(0)|H1)

)
≤

n∑
i=1

(
2mσ4

i + 4Es|hi|2σ2
i + (mσ2

i + Es|hi|2)2
)

where σi is the measurement noise variance for the ith SU,
and Es is the signal energy and hi is the channel gain. we
obtain 27.

Remark 3: ε-convergence of the average consensus or
gossip algorithm has been extensively studied in [26] [12]
[22]. Theorem 1 is a generalization to weighted average
consensus convergence with random link failures. From
(27), we can see clearly that the convergence rate of ε-
convergence depends on the desired accuracy ε, the mea-
surement channel noise variance σi, signal energy Es,
channel gain hi and the expectation E (‖(W − J1)‖∞).

Remark 4: Practically, E (‖(W − J1)‖∞) is not easy to
compute. Because the norm ‖ · ‖ is a convex function, we
have

E (‖(W − J1)‖∞) ≥ ‖(W − J1)‖∞ ≥ ρ(W − J1),(41)

the second inequality is from the property of the matrix
spectral radius. Therefore, we can use ρ(W − J1) as an
estimation of the minima of E (‖(W − J1)‖∞) so that we
have an approximation of T (ε).

5 SUPPLEMENTARY SIMULATION RESULTS

5.1 Pd with respect to the algorithm convergence
and PU transmission power
In order to characterize the convergence performance in
terms of the detection probability Pd, Fig. 1(a) shows
the trend of the Pd curves during the fusion process
with respect to the consensus iteration step under fixed
communication channels. We observe that the detection
probability of 10 SU nodes converges to the same value
0.97 as the centralized Weighted Gain Combining (WGC)
[27] approach within 35 steps. The false alarm is set at
Pf = 0.1, the variance of Gaussian noise σi = 1,∀i, and
the channel SNR varies from 0 dB to -10 dB.

In this scenario, we evaluate the detection performance
of the proposed scheme with respect to PU transmission
power variation under the AWGN measurement channels.
In Fig. 1(b), we compare the detection probability Pd of the
proposed DWGC with existing EGC, OR and centralized
WGC schemes. Under the AWGN channel condition, since
the variance of Gaussian noise is fixed at σi = 1 for all
i, the PU transmission power is directly reflected in the
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Fig. 1: (a) Detecting probability Pd with respect to iteration time
step, fixed communication topology, Pf = 0.1. (b) Detection
probability Pd with respect to PU signal SNR. Pf = 0.1, SUs
are located 50m to 150m away from the PU.

PU signal SNR in dB. From Fig. 1(b), we observe that
DWGC always achieves the highest detection probability
under both fixed and dynamic communication channels,
and DWGC has comparable performance with centralized
WGC. Particularly, when channel SNR is 0 dB, DWGC
achieves detection probability of 0.77, which has 40% and
88% improvement over EGC and OR, respectively. When
the PU transmission power becomes larger, such as close to
5 dB, the three approaches offer similar performance. The
results validate that when the PU transmission power is low,
the DWGC approach offers higher detection probability
than EGC and OR approaches.

5.2 Detection Performance with respect to Net-
work Size
In Fig. 2, we study the ROC of the proposed DWGC,
EGC, OR and centralized WGC approaches under AWGN
channel with different SU network sizes. Particularly, the
detection performance is evaluated under the network sce-
nario with 50 and 100 nodes respectively, as shown in Fig.
2(a) and Fig. 2(b).

We observe that the proposed DWGC method always
achieves the best performance with the centralized WGC
approach under different network sizes. In particular, when
the false alarm Pf is set to 0.1, the detection probability of
DWGC method acheives over 0.9. Further, as the network
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Fig. 2: ROC under AWGN channels with different network sizes.
The channel SNR ranges from -5dB to -15dB. (a) ROC of a 50-
node SU grid network. (b) ROC of a 100-node SU grid network.

size increases, the detection probability also increases. For
both 50-node and 100-node cases, the detection probability
of DWGC has 10% and 50% improvement than that of
EGC and OR methods, respectively. Moreover, we assume
the variance of Gaussian noise is fixed at σi = 1,∀i, and the
channel SNR ranges from −5dB to −15dB, which is lower
than the condition in Fig. 4 of the main paper with node
size 10, 20 and 30. Such even harsher wireless environment
further show the advantages of the proposed weighted
design, which could achieve high detection probability as
well as low false alarm rate, especially compared with
distributed EGC and OR rule approaches.

Next, we examine the ROC curves for several different
detection methods, including our proposed DWGC, EGC,
OR and centralized WGC approaches under Rayleigh fad-
ing channel with different SU network sizes as shown
in Fig. 3. Specifically, Fig. 3(a) and Fig. 3(b) provide
the detectopm performance with the network including 50
and 100 nodes under the Rayleigh channel with identical
channel conditions.

Similar as AWGN channel, we observe that DWGC
method still achieves the best performance under different
network sizes. In particular, when the false alarm Pf is set
to 0.1, DWGC method has the detection probability above
0.9. We further find that the detection probability increases
as the network size increases. For both 50-node and 100-
node cases, the proposed DWGC method has 10% and 40%
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Fig. 3: ROC under Rayleigh fading channels with different
network sizes. The channel SNR ranges from -7dB to 3dB. (a)
ROC of a 50-node SU grid network. (b) ROC of a 100-node SU
grid network.

improvement on the detection probability than the EGC and
OR methods. In addition, we also assume the variance of
Gaussian noise is fixed at σi = 1,∀i, and the channel SNR
ranges from −7dB to 3dB. Therefore, for Rayleigh fading
channel , the proposed DWGC approach has comparable
performance with WGC and even outperforms EGC and
OR rule in terms of detection probability under same false
alarm constraints.

Overall speaking, when network size varies from 10 to
100 nodes, our proposed DWGC method achieves the best
detection performance with the DWGC, and outperforms all
the other existing spectrum sensing methods. Meanwhile,
we also observe the detection performance of the weighted
combining and equal gain combining become closer when
the network size increases under the same measurement
condition. The underlying reason is that the detection
performance of cooperative spectrum sensing depends on
the variety brought by the different weights from the SU
network. As the network size increases, more SU nodes
are involved in the cooperative spectrum sensing, which
provides more reliability and robustness on the detection
performance, especially for EGC method. Therefore, the
detection performance for EGC method becomes better.
In conclusion, DWGC outperforms EGC and OR rule and
performs equivalently with WGC over the network sizes
from 10 to 100 nodes. DWGC shows more benefits for
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relatively smaller SU networks.
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