9 research outputs found
Choline and DHA in Maternal and Infant Nutrition: Synergistic Implications in Brain and Eye Health
The aim of this review is to highlight current insights into the roles of choline and docosahexaenoic acid (DHA) in maternal and infant nutrition, with special emphasis on dietary recommendations, gaps in dietary intake, and synergistic implications of both nutrients in infant brain and eye development. Adequate choline and DHA intakes are not being met by the vast majority of US adults, and even more so by women of child-bearing age. Choline and DHA play a significant role in infant brain and eye development, with inadequate intakes leading to visual and neurocognitive deficits. Emerging findings illustrate synergistic interactions between choline and DHA, indicating that insufficient intakes of one or both could have lifelong deleterious impacts on both maternal and infant health
Micronutrient Gaps in Three Commercial Weight-Loss Diet Plans
Weight-loss diets restrict intakes of energy and macronutrients but overlook micronutrient profiles. Commercial diet plans may provide insufficient micronutrients. We analyzed nutrient profiles of three plans and compared their micronutrient sufficiency to Dietary Reference Intakes (DRIs) for male U.S. adults. Hypocaloric vegan (Eat to Live-Vegan, Aggressive Weight Loss; ETL-VAWL), high-animal-protein low-carbohydrate (Fast Metabolism Diet; FMD) and weight maintenance (Eat, Drink and Be Healthy; EDH) diets were evaluated. Seven single-day menus were sampled per diet (n = 21 menus, 7 menus/diet) and analyzed for 20 micronutrients with the online nutrient tracker CRON-O-Meter. Without adjustment for energy intake, the ETL-VAWL diet failed to provide 90% of recommended amounts for B12, B3, D, E, calcium, selenium and zinc. The FMD diet was low (<90% DRI) in B1, D, E, calcium, magnesium and potassium. The EDH diet met >90% DRIs for all but vitamin D, calcium and potassium. Several micronutrients remained inadequate after adjustment to 2000 kcal/day: vitamin B12 in ETL-VAWL, calcium in FMD and EDH and vitamin D in all diets. Consistent with previous work, micronutrient deficits are prevalent in weight-loss diet plans. Special attention to micronutrient rich foods is required to reduce risk of micronutrient deficiency in design of commercial diets
Evidence of Drug–Nutrient Interactions with Chronic Use of Commonly Prescribed Medications: An Update
The long-term use of prescription and over-the-counter drugs can induce subclinical and clinically relevant micronutrient deficiencies, which may develop gradually over months or even years. Given the large number of medications currently available, the number of research studies examining potential drug–nutrient interactions is quite limited. A comprehensive, updated review of the potential drug–nutrient interactions with chronic use of the most often prescribed medications for commonly diagnosed conditions among the general U.S. adult population is presented. For the majority of the interactions described in this paper, more high-quality intervention trials are needed to better understand their clinical importance and potential consequences. A number of these studies have identified potential risk factors that may make certain populations more susceptible, but guidelines on how to best manage and/or prevent drug-induced nutrient inadequacies are lacking. Although widespread supplementation is not currently recommended, it is important to ensure at-risk patients reach their recommended intakes for vitamins and minerals. In conjunction with an overall healthy diet, appropriate dietary supplementation may be a practical and efficacious way to maintain or improve micronutrient status in patients at risk of deficiencies, such as those taking medications known to compromise nutritional status. The summary evidence presented in this review will help inform future research efforts and, ultimately, guide recommendations for patient care
New Prebiotic Blend of Polydextrose and Galacto-oligosaccharides Has a Bifidogenic Effect in Young Infants
Objective: The aim of the study was to evaluate the effect of infant formula with polydextrose (PDX) and galacto-oligosaccharides (GOS) on fecal microbiota and secretory IgA (sIgA). Materials and Methods: In the present double-blind, randomized study, term infants received control (Enfamil Lipil) or the same formula with PDX/GOS (4 g/L, 1:1 ratio; PDX/GOS) for 60 days; a reference breast-fed group was included. Formula intake, tolerance, and stool characteristics were collected via electronic diary and analyzed by repeated measures analysis of variance. Anthropometric measurements and stool samples were obtained at baseline and after 30 and 60 days of feeding. Fecal sIgA was measured by enzyme-linked immunosorbent assay and fecal bacteria by fluorescent in situ hybridization and quantitative real-time polymerase chain reaction (qPCR); both were analyzed by Wilcoxon rank sum test. Results: Two hundred thirty infants completed the study. Infants consuming PDX/GOS had softer stools than control at all times (P <0.001). Using qPCR, counts in PDX/GOS were closer to the breast-fed group, tended to be higher than control for total bifidobacteria (P=0.069) and Bifidobacterium longum (P=0.057) at 30 days, and were significantly higher for total bifidobacteria and B longum at 60 days and B infantis at 30 days (P = 0.002). No significant differences were detected between PDX/GOS and control in changes from baseline to 30 or 60 days for sIgA or total bifidobacteria by fluorescent in situ hybridization or qPCR; however, significantly higher changes from baseline were detected between PDX/GOS and control for B infantis at 30 days and B longum at 60 days (P Conclusions: Infant formula with PDX/GOS produces soft stools and a bifidogenic effect closer to breast milk than formula without PDX/GOS
Journal of Pediatric Gastroenterology and Nutrition
Texto completo: acesso restrito. p. 288–290Healthy 9- to 48-month-old children (n = 133) were randomized to receive a cow's-milk–based follow-on formula (control) or the same formula with polydextrose and galactooligosaccharides (PDX/GOS) for 108 days. Pediatricians assessed diarrheal disease, stool pattern, acute respiratory infection, systemic antibiotic use, and growth. The 2 groups had similar weight-for-length/height z score and similar odds of having diarrheal disease, acute respiratory infection, and systemic antibiotic use; however, PDX/GOS had greater odds of increased defecation than control (P <= 0.01). Addition of PDX and GOS to a follow-on formula was well tolerated and induced a pattern of more frequent and softer stools in toddlers