213 research outputs found
Electromagnetic interferences from plasmas generated in meteoroids impacts
It is shown that the plasma, generated during an impact of a meteoroid with
an artificial satellite, can produce electromagnetic radiation below the
microwave frequency range. This interference is shown to exceed local noise
sources and might disturb regular satellite operations.Comment: 6 pages, no figures. This version macthes the published versio
Ground State Energy of the One-Component Charged Bose Gas
The model considered here is the `jellium' model in which there is a uniform,
fixed background with charge density in a large volume and in
which particles of electric charge and mass move --- the
whole system being neutral. In 1961 Foldy used Bogolubov's 1947 method to
investigate the ground state energy of this system for bosonic particles in the
large limit. He found that the energy per particle is in this limit, where .
Here we prove that this formula is correct, thereby validating, for the first
time, at least one aspect of Bogolubov's pairing theory of the Bose gasComment: 38 pages latex. Typos corrected.Lemma 6.2 change
Hall magnetohydrodynamics of partially ionized plasmas
The Hall effect arises in a plasma when electrons are able to drift with the
magnetic field but ions cannot. In a fully-ionized plasma this occurs for
frequencies between the ion and electron cyclotron frequencies because of the
larger ion inertia. Typically this frequency range lies well above the
frequencies of interest (such as the dynamical frequency of the system under
consideration) and can be ignored. In a weakly-ionized medium, however, the
Hall effect arises through a different mechanism -- neutral collisions
preferentially decouple ions from the magnetic field. This typically occurs at
much lower frequencies and the Hall effect may play an important role in the
dynamics of weakly-ionised systems such as the Earth's ionosphere and
protoplanetary discs.
To clarify the relationship between these mechanisms we develop an
approximate single-fluid description of a partially ionized plasma that becomes
exact in the fully-ionized and weakly-ionized limits. Our treatment includes
the effects of ohmic, ambipolar, and Hall diffusion. We show that the Hall
effect is relevant to the dynamics of a partially ionized medium when the
dynamical frequency exceeds the ratio of ion to bulk mass density times the
ion-cyclotron frequency, i.e. the Hall frequency. The corresponding length
scale is inversely proportional to the ion to bulk mass density ratio as well
as to the ion-Hall beta parameter.Comment: 11 page, 1 figure, typos removed, numbers in tables revised; accepted
for publication in MNRA
Heating mechanisms in radio frequency driven ultracold plasmas
Several mechanisms by which an external electromagnetic field influences the
temperature of a plasma are studied analytically and specialized to the system
of an ultracold plasma (UCP) driven by a uniform radio frequency (RF) field.
Heating through collisional absorption is reviewed and applied to UCPs.
Furthermore, it is shown that the RF field modifies the three body
recombination process by ionizing electrons from intermediate high-lying
Rydberg states and upshifting the continuum threshold, resulting in a
suppression of three body recombination. Heating through collisionless
absorption associated with the finite plasma size is calculated in detail,
revealing a temperature threshold below which collisionless absorption is
ineffective.Comment: 14 pages, 7 figure
Diagnostics of MHD generator plasmas
Rare-gas magnetohydrodynamic generator - Plasma diagnostic
Experimental investigation of an atmospheric photoconductively switched high-voltage spark gap
We report on the experimental investigation of the photoconductively switched gas-filled spark gap. When the laser intensity of a femtosecond laser is high enough (around 1018 Wm-2), a plasma can be created that spans the complete distance between the electrodes. The gas-filled spark gap is then closed on a femtosecond timescale, similar to photoconductive switching of a semiconductor switch. Stochastic breakdown processes, such as avalanche and streamer formation that cause the breakdown in laser triggered spark gaps, are passed over, which results in faster risetime and less jitter. Measurements of the switched pulses as a function of laser energy were performed in a 1 mm gap at an applied voltage of 4.5 kV. A clear transition from triggering to switching was measured with increased laser energy. Measurements of the output pulses with the gap filled with nitrogen at 1 atm showed results very similar to measurements in air in the same gap. In the switching regime, the amplitude of the switched pulse did not depend strongly on the laser energy. Measurements at lower applied voltages but with the same gap distance showed that it was possible to switch voltages as low as 10% of the self-breakdown voltage. At low applied voltages, a significant difference between the applied voltage and the output voltage is measured. A possible explanation is given based on the dynamic behavior of the laser created plasma. The measured rise time and jitter of the switched pulses were both below the resolution of the measurement equipment, i.e., better than 100 ps and 15 ps, respectively
Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg
Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg^+/Dy^+, the electron density, the ground state, and the totaldensity of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Kinetic Theory of Plasmas: Translational Energy
In the present contribution, we derive from kinetic theory a unified fluid
model for multicomponent plasmas by accounting for the electromagnetic field
influence. We deal with a possible thermal nonequilibrium of the translational
energy of the particles, neglecting their internal energy and the reactive
collisions. Given the strong disparity of mass between the electrons and heavy
particles, such as molecules, atoms, and ions, we conduct a dimensional
analysis of the Boltzmann equation. We then generalize the Chapman-Enskog
method, emphasizing the role of a multiscale perturbation parameter on the
collisional operator, the streaming operator, and the collisional invariants of
the Boltzmann equation. The system is examined at successive orders of
approximation, each of which corresponding to a physical time scale. The
multicomponent Navier-Stokes regime is reached for the heavy particles, which
follow a hyperbolic scaling, and is coupled to first order drift-diffusion
equations for the electrons, which follow a parabolic scaling. The transport
coefficients exhibit an anisotropic behavior when the magnetic field is strong
enough. We also give a complete description of the Kolesnikov effect, i.e., the
crossed contributions to the mass and energy transport fluxes coupling the
electrons and heavy particles. Finally, the first and second principles of
thermodynamics are proved to be satisfied by deriving a total energy equation
and an entropy equation. Moreover, the system of equations is shown to be
conservative and the purely convective system hyperbolic, thus leading to a
well-defined structure
- …