5 research outputs found
Characterization of two transgene insertional mutations at pirouette, a mouse deafness locus
The mouse mutant ‘pirouette’ (pi) exhibits profound hearing loss and vestibular defects due to inheritance of a recessive mutation on chromosome 5. Dysfunction has been correlated with defects during maturation of sensory cells in the inner ear. As an initial step in characterizing pirouette at the genetic level, we have localized the candidate interval to a small region on central chromosome 5 by analysis of a congenic strain of pirouette mice. This region exhibits conserved synteny with human chromosome 4 and suggests that pirouette may be a genetic model of the human nonsyndromic deafness disorder DFNB25, which has been localized to 4p15.3–q12. In addition to the original spontaneous pirouette strain, we have identified and characterized 2 additional mouse strains with allelic mutations at the same locus. Analysis of the morphology in each of the 3 pirouette alleles indicated very similar early postnatal alterations in maturation of stereocilia and suggests that the gene affected in pirouette normally plays a role in building or maintaining these structures that are critical for sensory mechanotransduction
Mutations in a Novel Gene, TMIE, Are Associated with Hearing Loss Linked to the DFNB6 Locus
We have identified five different homozygous recessive mutations in a novel gene, TMIE (transmembrane inner ear expressed gene), in affected members of consanguineous families segregating severe-to-profound prelingual deafness, consistent with linkage to DFNB6. The mutations include an insertion, a deletion, and three missense mutations, and they indicate that loss of function of TMIE causes hearing loss in humans. TMIE encodes a protein with 156 amino acids and exhibits no significant nucleotide or deduced amino acid sequence similarity to any other gene
Mutations in Grxcr1 Are The Basis for Inner Ear Dysfunction in the Pirouette Mouse
Recessive mutations at the mouse pirouette (pi) locus result in hearing loss and vestibular dysfunction due to neuroepithelial defects in the inner ear. Using a positional cloning strategy, we have identified mutations in the gene Grxcr1 (glutaredoxin cysteine-rich 1) in five independent allelic strains of pirouette mice. We also provide sequence data of GRXCR1 from humans with profound hearing loss suggesting that pirouette is a model for studying the mechanism of nonsyndromic deafness DFNB25. Grxcr1 encodes a 290 amino acid protein that contains a region of similarity to glutaredoxin proteins and a cysteine-rich region at its C terminus. Grxcr1 is expressed in sensory epithelia of the inner ear, and its encoded protein is localized along the length of stereocilia, the actin-filament-rich mechanosensory structures at the apical surface of auditory and vestibular hair cells. The precise architecture of hair cell stereocilia is essential for normal hearing. Loss of function of Grxcr1 in homozygous pirouette mice results in abnormally thin and slightly shortened stereocilia. When overexpressed in transfected cells, GRXCR1 localizes along the length of actin-filament-rich structures at the dorsal-apical surface and induces structures with greater actin filament content and/or increased lengths in a subset of cells. Our results suggest that deafness in pirouette mutants is associated with loss of GRXCR1 function in modulating actin cytoskeletal architecture in the developing stereocilia of sensory hair cells