3,014 research outputs found

    Corticospinal and reticulospinal contacts on cervical commissural and long descending propriospinal neurons in the adult rat spinal cord; evidence for powerful reticulospinal connections

    Get PDF
    Descending systems have a crucial role in the selection of motor output patterns by influencing the activity of interneuronal networks in the spinal cord. Commissural interneurons that project to the contralateral grey matter are key components of such networks as they coordinate left-right motor activity of fore and hind-limbs. The aim of this study was to determine if corticospinal (CST) and reticulospinal (RST) neurons make significant numbers of axonal contacts with cervical commissural interneurons. Two classes of commissural neurons were analysed: 1) local commissural interneurons (LCINs) in segments C4-5; 2) long descending propriospinal neurons (LDPNs) projecting from C4 to the rostral lumbar cord. Commissural interneurons were labelled with Fluorogold and CST and RST axons were labelled by injecting the b subunit of cholera toxin in the forelimb area of the primary somatosensory cortex or the medial longitudinal fasciculus respectively. The results show that LCINs and LDPNs receive few contacts from CST terminals but large numbers of contacts are formed by RST terminals. Use of vesicular glutamate and vesicular GABA transporters revealed that both types of cell received about 80% excitatory and 20% inhibitory RST contacts. Therefore the CST appears to have a minimal influence on LCINs and LDPNs but the RST has a powerful influence. This suggests that left-right activity in the rat spinal cord is not influenced directly via CST systems but is strongly controlled by the RST pathway. Many RST neurons have monosynaptic input from corticobulbar pathways therefore this pathway may provide an indirect route from the cortex to commissural systems. The cortico-reticulospinal-commissural system may also contribute to functional recovery following damage to the CST as it has the capacity to deliver information from the cortex to the spinal cord in the absence of direct CST input

    Preoperational Child's Concept of Family Structure

    Get PDF
    Family Relations and Child Developmen

    Proof of polar ejection fom the close-binary core of the planetary nebula Abell 63

    Get PDF
    We present the first detailed kinematical analysis of the planetary nebula Abell 63, which is known to contain the eclipsing close-binary nucleus UU Sge. Abell 63 provides an important test case in investigating the role of close-binary central stars on the evolution of planetary nebulae. Longslit observations were obtained using the Manchester echelle spectrometer combined with the 2.1-m San Pedro Martir Telescope. The spectra reveal that the central bright rim of Abell 63 has a tube-like structure. A deep image shows collimated lobes extending from the nebula, which are shown to be high-velocity outflows. The kinematic ages of the nebular rim and the extended lobes are calculated to be 8400+/-500 years and 12900+/-2800 years, respectively, which suggests that the lobes were formed at an earlier stage than the nebular rim. This is consistent with expectations that disk-generated jets form immediately after the common envelope phase. A morphological-kinematical model of the central nebula is presented and the best-fit model is found to have the same inclination as the orbital plane of the central binary system; this is the first proof that a close-binary system directly affects the shaping of its nebula. A Hubble-type flow is well-established in the morphological-kinematical modelling of the observed line profiles and imagery. Two possible formation models for the elongated lobes of Abell 63 are considered (1) a low-density, pressure-driven jet excavates a cavity in the remnant AGB envelope; (2) high-density bullets form the lobes in a single ballistic ejection event.Comment: 11 pages, 8 figures, accepted by MNRAS for publicatio

    Recognition and management of stroke in young adults and adolescents.

    Get PDF
    Approximately 15% of all ischemic strokes (IS) occur in young adults and adolescents. To date, only limited prior public health and research efforts have specifically addressed stroke in the young. Early diagnosis remains challenging because of the lack of awareness and the relative infrequency of stroke compared with stroke mimics. Moreover, the causes of IS in the young are heterogeneous and can be relatively uncommon, resulting in uncertainties about diagnostic evaluation and cause-specific management. Emerging data have raised public health concerns about the increasing prevalence of traditional vascular risk factors in young individuals, and their potential role in increasing the risk of IS, stroke recurrence, and poststroke mortality. These issues make it important to formulate and enact strategies to increase both awareness and access to resources for young stroke patients, their caregivers and families, and health care professionals. The American Academy of Neurology recently convened an expert panel to develop a consensus document concerning the recognition, evaluation, and management of IS in young adults and adolescents. The report of the consensus panel is presented herein

    Sewage reflects the microbiomes of human populations

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mBio 6 (2015): e02574-14, doi:10.1128/mBio.02574-14.Molecular characterizations of the gut microbiome from individual human stool samples have identified community patterns that correlate with age, disease, diet, and other human characteristics, but resources for marker gene studies that consider microbiome trends among human populations scale with the number of individuals sampled from each population. As an alternative strategy for sampling populations, we examined whether sewage accurately reflects the microbial community of a mixture of stool samples. We used oligotyping of high-throughput 16S rRNA gene sequence data to compare the bacterial distribution in a stool data set to a sewage influent data set from 71 U.S. cities. On average, only 15% of sewage sample sequence reads were attributed to human fecal origin, but sewage recaptured most (97%) human fecal oligotypes. The most common oligotypes in stool matched the most common and abundant in sewage. After informatically separating sequences of human fecal origin, sewage samples exhibited ~3× greater diversity than stool samples. Comparisons among municipal sewage communities revealed the ubiquitous and abundant occurrence of 27 human fecal oligotypes, representing an apparent core set of organisms in U.S. populations. The fecal community variability among U.S. populations was significantly lower than among individuals. It clustered into three primary community structures distinguished by oligotypes from either: Bacteroidaceae, Prevotellaceae, or Lachnospiraceae/Ruminococcaceae. These distribution patterns reflected human population variation and predicted whether samples represented lean or obese populations with 81 to 89% accuracy. Our findings demonstrate that sewage represents the fecal microbial community of human populations and captures population-level traits of the human microbiome.Funding for this work was provided by the NIH grant R01AI091829-01A1 to S.L.M. and M.L.S

    Sequence and the Developmental and Tissue-Specific Regulation of the First Complete Vitellogenin Message From Ticks

    Get PDF
    The first full-length mRNA for vitellogenin (Vg) from ticks was sequenced. This also represents the first complete sequence of Vg from the Chelicerata and of a heme binding Vg. The Vg cDNA from the American dog tick, Dermacentor variabilis was 5744nt in length (GenBank Accession number AY885250), which coded for a protein of 1843aa with a calculated molecular weight of 208kD. This protein had an 18 aa signal sequence, a single RXXR cleavage signal that would generate two subunits (49.5 and 157K in molecular weight) and lipoprotein N-terminal and carboxy von Willebrand factor type D domains. Tryptic digest MS analysis of vitellin protein confirmed the function of the cDNA as the tick yolk protein. Apparently, vitellin in D. variabilis is oligomeric (possibly dimeric) and is comprised of a mixture of the uncleaved monomer and subunits that were predicted from the single RXXR cleavage signal. The highly conserved GL/ICG motif close to the C-terminus in insect Vg genes was different in the tick Vg message, i.e., GLCS. This variant was also present in a partial sequence of Vg from Boophilus microplus. Phylogenic analysis showed that the full length Vg cDNA from D. variabilis and the partial cDNA from B. microplus were distinct from insects and Crustacea. The Vg message was not found in whole body RNA from unfed or fed males or in unfed and partially fed (virgin) females as determined by Northern blotting. The message was found in replete (mated) pre-ovipositional females, increased to higher levels in ovipositing females and was absent after egg laying was complete. The endocrine regulation of the Vg mRNA is discussed. The tissue sources of the Vg message are both the gut and fat body. Tryptic digest MS fingerprinting suggests that a second Vg mRNA might be present in the American dog tick, which needs further study

    Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 107 (2010): 1612-1617, doi:10.1073/pnas.0905369107.The Lost City Hydrothermal Field, an ultramafic-hosted system located 15 km west of the Mid-Atlantic Ridge, has experienced at least 30,000 years of hydrothermal activity. Previous studies have shown that its carbonate chimneys form by mixing of ~90ÂșC, pH 9-11 hydrothermal fluids and cold seawater. Flow of methane and hydrogen-rich hydrothermal fluids in the porous interior chimney walls supports archaeal biofilm communities dominated by a single phylotype of Methanosarcinales. In this study, we have extensively sampled the carbonate-hosted archaeal and bacterial communities by obtaining sequences of >200,000 amplicons of the 16S rRNA V6 region and correlated the results with isotopic (230Th) ages of the chimneys over a 1200 year period. Rare sequences in young chimneys were often more abundant in older chimneys, indicating that members of the rare biosphere can become dominant members of the ecosystem when environmental conditions change. These results suggest that a long history of selection over many cycles of chimney growth has resulted in numerous closely related species at Lost City, each of which is pre-adapted to a particular set of re-occurring environmental conditions. Due to the unique characteristics of the Lost City Hydrothermal Field, these data offer an unprecedented opportunity to study the dynamics of a microbial ecosystem's rare biosphere over a thousand-year time scale.This research was supported by the W.M. Keck Foundation to MLS, the NASA Astrobiology Institute through the Carnegie Institution for Science to JAB and through the MBL to MLS, NSF Grant OCE0137206 and NOAA Ocean Exploration support to DSK, and grants 96-2116-M002-003 and 97-2752-M004-PAE to C.-C. Shen
    • 

    corecore