
Old Dominion University
ODU Digital Commons

Biological Sciences Faculty Publications Biological Sciences

2007

Sequence and the Developmental and Tissue-
Specific Regulation of the First Complete
Vitellogenin Message From Ticks
Deborah M. Thompson

Sayed M.S. Khalil

Laura A. Jeffers

Daniel E. Sonenshine
Old Dominion University, dsonensh@odu.edu

Robert D. Mitchell
Old Dominion University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/biology_fac_pubs

Part of the Entomology Commons, Genetics Commons, and the Parasitology Commons

This Article is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in
Biological Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Thompson, Deborah M.; Khalil, Sayed M.S.; Jeffers, Laura A.; Sonenshine, Daniel E.; Mitchell, Robert D.; Osgood, Christopher J.; and
Roe, R. Michael, "Sequence and the Developmental and Tissue-Specific Regulation of the First Complete Vitellogenin Message From
Ticks" (2007). Biological Sciences Faculty Publications. 105.
https://digitalcommons.odu.edu/biology_fac_pubs/105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217283555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/biology_fac_pubs?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/biology?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/biology_fac_pubs?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/83?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/39?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/biology_fac_pubs/105?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Authors
Deborah M. Thompson, Sayed M.S. Khalil, Laura A. Jeffers, Daniel E. Sonenshine, Robert D. Mitchell,
Christopher J. Osgood, and R. Michael Roe

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/biology_fac_pubs/105

https://digitalcommons.odu.edu/biology_fac_pubs/105?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages


For Insect Biochemistry and Molecular Biology 

Send Galley Proofs to: 

Dr. R. Michael Roe 
Department of Entomology 
Campus Box 764 7 
North Carolina State University 
Raleigh, NC 27695-7647 
919-515-4325 (phone/FAX) 
michael_roe@ncsu.edu 

Sequence and the developmental and tissue-specific regulation of 

the first complete vitellogenin message from ticks 

Deborah M. Thompson\ Sayed M. S. Khalil\ Laura A. Jeffers\ Daniel E. Sonenshineb·, 

Robert D. Mitc~ellb, Christopher J. Osgoodb, R. Michael Roea,• 

a Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, 

NC 27695-7647, USA 

b Department of Biological Sciences, Old Dominion University, 

Norfolk, Virginia 23529, USA 

Corresponding author. Department qfEntomology, Campus Box 7647, North Carolina State 
University, Raleigh, NC 27695, USA. 
Tel: +l 919 515 4325; fax +1919515 4325 

E-mail address: michael_roe@ncsu.edu (R.M. Roe) 



Abstract . 
The first full-length message for vitellogenin (V g) was sequenced from ticks. The V g cDNA 

from the American dog tick, Dermacentor variabilis was 5744 nt in length (Genbank 

Accession number DQ285422) which coated for a protein of 1844 aa with a calculated 

molecular weight of 208 K. This protein had a 19 aa signal sequence, a single RXXR 

cleavage signal which predicts two subunits (49.5 and 157 Kin molecular weight), and an 

expected lipoprotein N-terminal and c~boxy von Willebrand factor type D domain. Tryptic 

digest MS analysis ofvitellin protein confirmed the function ofDQ285422 as the tick yolk 

protein. Apparently, vitellin in D. variabilis is oligomeric possibly dimeric and is comprised 

of a mixture of the uncleaved monomer and subunits that were predicted from the single 

RXXR cleavage signal. The highly conserved GL/ICG motif.close to the C-terminus in insect 

Vg genes was different in the tick Vg message, i.e., GLCS; this variant was confirmed for 

another partial sequence ofVg from Boophilus microp/us. A phylogenic analysis showed that 

the full length V g from D. variabilis and the partial sequence from B. mi crop/us was distinct 

from insects and Crustacea. The V g message was not found in whole body RNA from unfed 

or fed males or in unfed and partially fed (virgin) females as determined by Northern blotting. 

The message was found in replete (mated) pre-ovipositional females, increased to higher 

levels in ovipositing females and was absent after egg laying was complete. The endocrine 

regulation of the V g message is discussed. The tissue sources of the V g message are both the 

gut and fat body. Tryptic digest MS fingerprinting suggests that a second V g message might 

be present in the American dog tick, which needs further study. J- 'i j 

1. Introduction 

Vitellogenin is a storage protein that becomes the major yolk protein of eggs. Vitellogenins 

are present in vertebrate and invertebrate animals, and appear to share a common ancestry 

(Chen et al., 1997). Vitellogenin is the initial gene product secreted into hemolymph. Once 

vitellogenin protein is made, the signal sequence ( approximately 16 residues at the amino 

terminus) is cleaved and vitellogenin protein is exported from the cell. V g protein is also split 

into large and small subunits and tr~sferred to developing oocytes as vitellin, the egg storage 

protein (reviewed in Raikhel and Dhadialla, 1992). Vitellin also acts to store and sequester 
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heme in ticks (Braz et al., 1999; Logullo et al., 2002). Vitellin proteins are phosphorylated 

and glycosylated (Dhadialla and Raikhel, 1990; Giorgi et al., 1998). 

To date, full-length vitellogenin (V g) cDNAs have been sequenced from at least 

28 insect species. Complete coding sequences of vitellogenin are available from non­

insect arthropods but not ticks. Incomplete sequences have been reported from the ticks 

B. microplus (GenBank accession number U49934;Tellam et al., 2002), Amblyomma 

americanum (GenBank accession number BI27356;Bior et al., 2002) and Dermacentor 

variabilis (GenBank accession number A Y885250;Thompson et al., 2005). The full­

length insect cDNAs range from 5441 nt (Apis mellifera; Piulachs et al., 2003) to 6654 nt 

(Encarsiaformosa; Donnell, 2004). Crustacean vitellogenin cDNAs range from 7782 nt 

(Macrobrachium rosenbergii; Yang et al., 2000) to 8012 nt (Mentapenaeus ensis; Tsang 

et al., 2003). 

The fat body has long been accepted as the primary site ofVg RNA synthesis in . 

the Insecta (see for example, Kokoza et al. 2001; Tufail and Tukeda, 2002 reviewed in 

Melo et al., 2000; Raikhel et al., 2002), although the ovaries may be a secondary 

producer ofVg RNA in Coleoptera (Zhai et al., 1984) and higher Diptera (Brennan et al., 

1982; Isaac and Bownes, 1982). The follicle cells of Rhodnius prolixus synthesize V g 

proteins in addition to the fat body (Melo et_ al., 2000). By comparison, the site ofVg 

RNA synthesis has been in dispute in both the Chelicerata and the Crustacea. In Penaeus 

monodon (Tseng et al., 2001) and Macrobrachium rosenbergii (Lee and Chang, 1999; 

Okuno et al., 2002), the hepatopancreas is the main vitellogenic organ. In the Crustacea 

Cherax quadricarinatus (Serrano-Pinto et al., 2004), Penaeus semisulcatus (Avarre et al., 

2003) and Potamon potamios (Pateraki and .Stratakis, 2000), V g RNA is found in both 
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the hepatopancreas and ovary. In the shrimp, Metapenaeus ensis, Vg is encoded by at 

least two genes. One of the genes is expressed in both hepatopancreas and ovary, while 

the second is active in the hepatopancreas only (Tsang et al., 2003). There is evidence 

that Armadillidium vulgare (Suzuki et al., 1989) produces V g in the ovary and the fat 

body, although a more recent report indicates fat body synthesis ofVg for A. vulgare 

(Okuno et al., 2000). Crassostrea gigas (Matsumoto et al., 2003) and Jdotea balthica 

basteri (Souty and Picaud, 1981) apparently synthesize vitellogenin in the fat body alone. 

The site of synthesis of V g in the hard ticks is unknown, although it has been assumed, 

by analogy with the Insecta to be the fat body. Chinzei and Yano (1985) identified the fat 

body as the source ofvitellogenin in the soft tick, Ornithodoros moubata. However, 

Rosell and Coons (1992) and Coons et al. (1989), concluded that the D. variabilis midgut 

may play a role in vitellogenin production (reviewed in Sonenshine, 1991). Certainly, 

significant changes occur in the midgut upon ingestion of the blood meal (Agyei and 

Runham, 1995). Thus, there is ambiguity about the site of synthesis of the V g in ticks. 

To date, no full-length message for a Vg from ticks has been available. In the 

current paper, we sequenced the first V g message and examined its expression during 

development and in specific tissues of the American dog tick. 

2. Experimental procedures 

2.1. Ticks 

A pathogen-free line of the American dog tick, D. variabilis, was reared as 

described previously (Sonenshine, 1993). Adult ticks were confined within plastic 

capsules attached to New Zealand white rabbits ( Oryctolagus cuniculus) and allowed to 
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feed and mate as required. Rearing conditions were 26± 1 °C, 92±6% relative humidity 

and 14: 10 (L:D). 

2. 2. Tissue dissection, egg and hemolymph collection. 

Ovaries, midguts and fat bodies from replete (mated, pre-ovipositing) females 

were dissected, washed in ice-cold phosphate-buffered saline (pH 7.0, 0.010 M NaH2P04, 

0.014 M Na2HP04, 0.15 _M NaCl) and immediately stored in RNAlater (Ambion, Austin, 

TX) at -80 °C until used for RNA isolation. Hemolymph was collected as described by 

Johns et al. (1998). Briefly, ticks were immobilized on slides, ventral side up on double­

sided tape and one or two forelegs amputated with microdissecting scissors. While 

applying gentle pressure, clear hemolymph exuded from the opening to the body cavity 

was collected with a glass Drummond micropipette, transferred to an Eppendorf tube, and 

diluted 1: 1 in PBS. Newly oviposited eggs were collected and stored overnight at -80 °C. 

Eggs (n=25) were rinsed once with Dulbecco's phosphate buffer (Pierce, Rockford, IL) 

with Tween 20 (0.05% v/v) and homogenized in 500 µl of PBST with a ceramic mortar 

and pestle. The homogenate was clarified by centrifugation at 960g at 4 °C for 10 min. 

Diluted hemolymph and egg homogenate were stored at -80 °C until needed for further 

analysis. 

2.3. RNA isolation and 5' RACE 

Total RNA was isolated from either whole bodies at different adult developmental 

stages (see results) or dissected tissues (described above) using TRI Reagent (Sigma, 

Saint Louis, MI) according to the manufacturer's recommendations except that RNA 

pellets were dissolved in water containing 10 µM aurin trichloroacetic. acid to prevent 

degradation (Hallick et al., 1997). Samples were assayed for RNA content using a 
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Molecular Devices Corporation Spectromax 384 Plus plate reader (Sunnyvale, CA) and 

then stored at -80 °C until needed for further analysis. 

The initial V g cDNA fragment from D. variabilis was oqtained from a cDNA 

library made from the fat body of replete (mated, vitellogenic) females as described in 

Thompson et al. (2005). To obtain the remainder of the 5' region of the Vg cDNA, 

5'RACE was performed using SMART RACE (Clontech, Palo Alto, CA). First-strand 

Vg cDNA was synthesized from total fat body RNA (from mated (replete) pre­

ovipositional eggs) in the presence of SMART IV oligonucleotide and V g specific 

reverse primer (SRP). The resulting cDNA fragment was amplified using the Advantage 

2 PCR Kit (Clontech). Several 5'RACE rounds were needed to obtain multiple 

fragments in the 5' region of the Vg cDNA, which were compiled to obtain the full Vg 

message. PCR amplification products were purified using the QIAquick PCR purification 

kit (Qiagen, Valencia, CA) and sent for sequencing in the Nucleic Acid Research 

Facilities in Virginia Commonthwealth University (Richmond, VA). · 

2. 4. Northern blots 

Five micrograms of each RNA sample was denatured by glyoxal treatment and 

separated by electrophoresis in a 1.25% agarose gel according to the phosphate protocol 

of Sambrook and Russell (2001). RNA was transferred by capillary action to a nylon 

membrane (Roche Diagnostics GmbH, Mannheim, Germany) followed by UV 

crosslinking according to the manufacturer's recommendations. The V g and ribosomal 

probes were digoxigenin-labeled by PCR amplification. PCR conditions and reagents 

were according to the manufacturer's recommendations (Roche Diagnostics GmbH). 

Blots were pre-hybridized, hybridized and washed according to the manufacturer's 
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recommendation except that all elevated temperature manipulations were performed at 

50 °C instead of 68 °C. Chromogenic detection was done using NBT/BCIP according to 

the manufacturer's recommendations. 

2. 5. Protein electrophoresis and digestion-mass fingerprinting 

Total protein in diluted hemolymph and clarified egg homogenate was determined 

by the Bio-Rad protein assay (Bio-Rad Laboratories, 1977) using bovine serum albumin 

(Fraction V; Fisher Scientific, Pittsburgh, PA) as a standard. The samples were then 

further diluted with native sample buffer (lnvitrogen, Carlsbad, CA) to obtain 3.8 µg of 

total protein per lane for each sample to be tested. Native polyacrylamide gel 

electrophoresis was conducted with an Invitrogen XCell SureLock™ electrophoresis 

apparatus, 8-16% polyacrylamide Tris-Glycine gels, and the appropriate buffers from 

Invitrogen. Electrophoresis was conducted at 130 V for 4 h. Following electrophoresis, 

the gels were stained with Coomassie Brilliant Blue R-250 ( 45 ml methanol, 10 ml 

glacial acetic acid, 45 ml water, 0.25 g Coomassie Brilliant Blue R-250) overnight. The 

gels were destained with a mixture of 30% methanol and 10% acetic acid overnight and 

then scanned using a Hewlett Packard ScanJet 5100C. To determine the relative 

molecular weight of the putative Vg and Vn bands, molecular weight s~dards (Sigma) 

were run in a separate lane. Gel slices from the native gel containing the purified 

(putative) Vn protein from eggs were submitted to the W.M. Keck Biomolecular 

Research Facility at the University of Virginia (Charlottesville, VA; 

www.healthsystem.virginia.edu/intemet/biomolec/) for tryptic digestion-mass 

fingerprinting as described previously (Cohen and Chait, 1997; Rao et al., 2003). After 

digestion with trypsin, peptides were introduced into a Thermo-Finnigan LCQ DecaXP 
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mass spectrometer, and the resulting spectra analyzed. The analysis does not differentiate 

between leucine (L) and isoleucine (I). The peptide sequences were queried by database 

searching using the Sequest search algorithm. Peptides that were not matched by this 

algorithm were interpreted manually and searched versus the EST databases using the 

Sequest algorithm. 

Samples for SDS PAGE ·gels were diluted with NuP AGE LDS sample buffer 

(lnvitrogen) to obtain 3.5 µg of total protein per lane for each sample to be tested. SDS 

polyacrylamide gel electrophoresis was conducted with an Invitrogen XCell SureLock™ 

electrophoresis apparatus, 4-12% polyacrylamide Bis-Tris gels, and the appropriate 

buffers from Invitrogen. Electrophoresis was conducted at 100 V for 4 h while the 

apparatus was in an ice bath. Fallowing electrophoresis, the gels were stained, destained, 

and scanned as described before. 

2.6. Sequence alignments and phylogenetic analysis of Vgs 

The conceptual translation of the V g mRNA and amino acid alignments with other 

V gs were obtained using Vector NTI advance 10 (lnvitrogen). Multiple sequence 

alignments were performed using ClustalW with gap opening penalty 10, gap extension 

penalty 0.05 and gap separation penalty range 8. The resulting guide tree was exported 

to Treeview 1.6.6 to create a radial dendrogram 

(http:/ !taxonomy.zoology .gla.ac. uk/rod/treeview.html). 

3. Results and discussion 

3.1. Firstfull~length Vg message 

A partial V g cDNA was previously cloned in our laboratories (A Y885250, 

Thompson et al. 2005). A forward primer designed from the 5' end of A Y885250 and 
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5'RACE were used in the current study to obtain an additional fragment of the Vg 

message upstream of A Y885250. This was followed by successive 5' RACE experiments 

using newly designed forward primers based on the new upstream fragments ofVg until 

the complete nt sequence of the Dv Vg cDNA (Genbank accession number DQ285422; 

Fig. 1) was obtained. In this effort, the successive 5' prime extensions contained at least a 

40 nt consensus between the known and the new· 5' upstream fragments. Any 5' RACE 

fragments, which did not match exactly in the area of overlap were not used in the 

assemblage of the final sequence of the V g message. The sequence of the V g cDNA is 

5744 nt, including 19 adenine nucleotides in the poly-A tail. The 5' untranslated region is 

relatively short, only 42 nt. By contrast, the 3' non-coding region extends 151 nt from the 

stop codon (TGA) to the start of the poly-A tail. 

Conceptual translation of the nucleotide sequence for V g yields 1844 aa (Fig. 1) 

with a calculated (Vector NTI) molecular weight for the unmodified monomer of 208K. 

Analysis by SignalP indicates that the first 18 aa represent the signal sequence. Cleavage 

is predicted to follow this signal to yield a predicted molecular weight of 206 K. The 

predicted cleavage site is indicated by an arrow in Fig. 1. The molecular weight of V g 

from D. variabilis determined by native PAGE and gel permeation chromatography was 

reported previously in the range of 320-486K (Sullivan et al., 1999; Gudderra et al., 

2001, 2002; Thompson et al., 2005). The size ofvitellin (Vn) from Dv by electrophoresis 

was in the range of 370-480K as determined by Rosell and Coons (1991) and also shown 

in Fig. 2 (lane 4) of this current study. Although there is considerable variation in the 

reports of the size of native Vg and Vn in the American dog tick, it is apparent that in all 

of these reports, the molecular weight exceeds that predicted from translation of the V g 
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message (Fig. 1 ). For example, if Dv V g exists as a dimer in hemolymph, the predicted 

molecular weight would be 412K (2 times 206K). This is in reasonable agreement with 

that for Vg and Vn previously reported for this species (Rosell and Coons, 1991; Sullivan 

et al., 1999; Gudderra et al., 2001, 2002; Thompson et al., 2005). Although we cannot 

confirm the exact oligomeric form ofVg and Vn in D. variabilis, Vg is known to exist in 

oligomeric forms in its native state in other Arthropods (Sappington and Raikhel, 1998); 

and it is apparent that the same occurs in Dv. V g has not been sequenced in full from any 

other tick species. In Dv, Vg demonstrated a high content of Leu and Val (12.9 and 

12.1 %, respectively) followed in decreasing abundance of Pro, Lys, Thr, Glu, Tyr and 

Ser (7.9, 7.8, 7.5, 7.2, 7.2 and 6.6%, respectively)(Table 1). The abundance of the 

remaining aa was 5.8% or less. 

Sappington and Raikhel (1998) noted that most insect vitellin proteins have a 

single cleavage site, which generates two protein subunits. The cleavage signal, RXXR, 

is found in Dv V g at amino acids 465-468 (boxed, Fig. 1 ). Cleavage following this signal 

would yield two subunits with predicted molecular weights of 49.5K starting at the 

amino-terminus) and 157K ending at the carboxy-terminus. The V g monomers of most 

· insects are composed of one large (> 150K) and one small (:S65K) subunit (reviewed in 

Kunkel and Nordin, 1985; Raikhel and Dhadialla, 1992; Valle, 1993) derived from the 

cleavage of a single precursor in the fat body (Bose and Raikhel, 1988; Dhadialla and 

Raikhel, 1990; Heilmann et al., 1993; Yano et al., 1994; Kageyama et al., 1994; Hiremath 

and Lehtoma, 1997). The predicted cleavage site for the Dv V g produces similar sized 

subunits consistent with that found in insects. Exceptions in the insects include the V gs of 

higher Hymenoptera (suborder Apocrita) (Wheeler and Kawooya, 1990; Kageyama et al., 
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1994; Nose et al., 1997) and two species of whitefly (Homoptera) (Tu et al., 1997), which 

are not cleaved. There is evidence that some orthopteran and sawfly V gs consist of three 

or four subunits (Kunkel and Nordin, 1985; della-Cioppa and Engelmann, 1987; Wyatt, 

1988; Kim and Lee, 1994; Takadera et al., 1996). V g in Ixodes scapularis contained 8 

subunits with molecular weights from 48 to 145K (James and Oliver, 1999) while 7 

subunits were reported for Vg (Sullivan et al., 1999) in D. variabilis. While Dv Vg and 

Vn migrates as a single protein on non-denaturing PAGE (Fig. 2, lanes 2/3 and 4, 

respectively), Dv Vn on SDS-PAGE migrated as seven major bands (data not shown). 

The subunits in Vn from the American dog tick were 210, 172, 157, 111, 76.2, 58.7, and 

50.8 K. Two of these proteins with molecular weights of 50.9 and 157K are predicted 

(49.5 and 157K, respectively) based on the RXXR cleavage site at amino acids 465--468. 

A third 21 OK protein apparently arises from the uncleaved monomer which had a 

predicted molecular weight based on the sequence and translation of the cDNA of 206 K 

( after removal of the signal sequence); uncleaved V g protein also occurs in some insects 

(Wheeler and Kawooya, 1990; Kageyama et al., 1994; Nose et al., 1997; Tu et al., 1997). 

The remaining proteins detected on. SDS-PAG in Dv vitellin may be an artifact of the 

preparation and the presence of endogenous proteases as suggested by Sappington and 

Raikhel (1998). More studies will be needed to confirm this hypothesis. Attempts to 

obtain N-terminal sequence of some of the proteins resolved by SDS-PAGE were 

unsuccessful, suggesting that the N-terminus in some cases may be blocked. 

· The NCBI Conserved Domain Search identified two domains of interest in Dv 

V g. A lipoprotein N-terminal domain, which spans amino acids 34--721 and a von 

Wille brand factor type D domain near the carboxy-terminus of the protein from amino 
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acids 1485-1655 (Fig. 1). Vitellogenins in general are predicted to contain both of these 

domains (Baker, 1988) in about the same positions as described for the native Vg protein 

of Dv (Fig. 1 ). 

Among the insect V g genes there is a highly conserved GL/ICG motif close to 

the C-terminus (Lee et al., 2000). Interestingly, in the crustacean sequences examined, 

the motif appears to be GLLG (see for example, Macrobrachium rosenbergii AB056458; 

Yang et al., 2000 Cherax quadricarinatus AF306784; Abdu et al., 2002 Penaeus 

japonicus AB033719; Tsutsui et al., 2000). A clotting protein from the signal crayfish 

(Pacifastacus leniusculus, AF102268; Hall et al., 1999) is homologous to vitellogenin 

and also contains a sequence that conforms to the insect GLCG. Interestingly, the Vg 

partial sequence from B. microplus (accession number AAA92143) and that from D. 

variabilis (Fig. 1) contain a variant sequence, GLCS, shown in italics in Fig. 1. The 

significance of this difference is not known. 

Compared with V g cDNA clones from other arthropods and their predicted aa 

sequence, Dv V g aligns well with GP80 from B. microplus, 81 % identity at the nt level 

and 80.2% similarity and 73.4% identity at the aa level. A phylogenetic tree was 

developed using the full amino acid sequence of V gs from representative insects and 

Crustacea. Included in the analysis was the available sequence information from the 

cattle and American dog tick. In this analysis, there is clear separation of the Insect and 

Crustacean groups (Fig. 3) as might be expected based on their known phylogeny. The 

partial V g clone from B. microplus and the full length protein from D. variabilis as might 

be expected based on phylogeny arose from a single node separate from the Mandibulata. 

Interestingly, there are 6 repeats of P(T/P)HH(K/E)(U/P) in GP80 from B. microplus. At 
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the carboxy-terminus of V g from the American dog tick, there were 11 similar repeats of 

P(T/S)HH(K/E)Y with one additional repeat further upstream. None of these repeats 

were found in the other Vg proteins examine (Fig. 3). Vg is a heme binding protein in 

ticks (reviewed by Gudderra et al., 2002) but not other animals. The mechanism of 

association of heme with tick Vg is not known. Eventhough the P(T/P)HH(KJE)(U/P) 

and P(T/S)HH(K/E)Y repeats of the tick Vgs are so far exclusive to Vgs that bind heme, 

it appears they are not critical for heme binding. The heme binding protein, CP 

( discussed in more detail below), also found in D. variabilis hemolymph does not have 

these repeats. The function of the Dv Vg P(T/S)HH(K/E)Y repeats are currently 

unknown. 

3.2. Tryptic digests MS confirmation of the identity of Dv Vn 

When total protein from eggs was separated by native PAGE, three major proteins 

were detected (Fig. 2, lane 4). The protein with the lowest molecular weight (200K) is the 

carrier protein CP, which was previously characterized from our laboratory by Gudderra 

et al. (2002) and recently deduced from the sequence of the cDNA (Accession number 

DQ422963; protein, ABD83654). The higher molecular weight protein (??K)(Laura, 

need this MW) has not been characterized. The most abundant protein in lane 4 (Fig. 2) 

has an apparent molecular weight of 367.5±7.8 (1 S.E., n=3) and is presumed to be 

vitellin based on its abundance and size. This putative Vn protein was extracted from the . 

gel and subjected to trypsin digest-mass finger printing. The peptides identified are 

shown in Table 2. Those in bold were identical to peptides identified by tryptic digest­

mass finger printing ofVg from D. variabilis (Thompson et al., 2005). These fragments 

were also found in the deduced aa sequence derived from the putative Dv V g message 
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(Fig. 1), confirming that DQ285422 codes for Vg found in the hemolymph and Vn in the · 

eggs of the American dog tick. One ·peptide sequence, EPL VSTLPVHYLEELKK, was 

not an exact match and will be discussed in more detail later. 

3.3. Developmental regulation of the Vg message and protein 

In order to examine the expression of the V g message during adult development, 

total RNA was isolated from unfed and fed adult male and female ticks of D. variabilis 

and subjected to Northern blot analysis using A Y885250 as a probe (Fig. 4). As a control 

for equal loading of RNA in all lanes, an equivalent blot was probed with the ribosomal 

protein LI Oa cDNA (Accn. No. CX663255). V g RNA was not detected in unfed or fed 

male D. variabilis. This is consistent with results from most arthropods, where V g is not 

expressed in males. Unfed and part-fed, virgin D. variabilis females also did not express 

V g RNA as would be expected but upon mating and blood feeding to repletion, V g RNA 

synthesis increased dramatically (Fig. 4). In pre-ovipositional mated females there was an 

obvious increase in the V g message over that of part fed females and expression 

increased even more in ovipositing females. The size of the V g message was 57 46± 7 nt 

(1 S.E., n=3) as determined by Northern blotting (Fig. 4), which was in good agreement 

with the size of the message that was sequenced by 5' RACE, 5744 nt (Fig. 1). The 

intensity of hybridization with ribosomal protein L 1 Oa was nearly equivalent in all lanes, 

with the exception of ovipositing females, where it decreased slightly ( data not shown). 

This is consistent with reports from mosquitoes that rprotein L 1 Oa RNA is down 

regulated after the blood meal (Ribeiro, 2003). 

Positively correlated with the increase in V g message after mating and blood 

feeding to repletion, was an increase in V g protein in the hemolymph as determined by 
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native PAGE. No V g was found in the hemolymph of part-fed, virgin females (Fig. 2, 

lane 1) while V g was found in increasing amounts in pre-ovipositing (*, lane 2) and 

ovipositing (*, lane 3) replete (mated) females. Previous work from this laboratory has 

confirmed by tryptic digest-mass fingerprinting that this protein is V g (Thompson et al., 

2005). Vn from the egg is shown in lane 4 and was discussed earlier. Vg demonstrated a 

slightly higher molecular weight (394.7±1.2 K; 1 S.E., n=3) than Vn (compare lanes 2 

and 3 with lane 4, Fig. 2) as has been shown before in insects (Raikhel and Dhadialla, 

1992). 

There is convincing evidence that ecdsysteroids and not juvenile hormone ( JH) 

regulate the expression of the V g message and deposition of the yolk protein in 

developing oocytes after mating and blood feeding to repletion in ticks. Neese et al. 

(2000) were unable to detect JH biosynthesis in Dv in unfed, partially fed, virgin and 

mated-replete females. In addition, no JH was detected in the hemolymph of mated 

replete females by EI GC MS. Sankhon et al. (1999) reported that ecdysteroids induced 

vitellogenesis in fat body from unfed adult females of the American dog tick in organ 

culture. In these experiments, they found significantly higher levels of V g (by ELISA) in 

the incubation medium as compared to controls. These studies are corroborated by earlier 

studies of Taylor et al. (1997) who found that ecdysteroid injections increased 

hemolymph V g concentrations in unfed 0. moubata but only at concentrations that were 

· toxic. Friesen and Kaufman (2002) also found that when ecdysteroids were injected into 

partially fed, female A. hebraeum, these ticks, which would otherwise be non­

vitellogenic, contained V g in their hemolymph as determined by Western blots. In 

addition, Thompson et al. (2005) found that injections of 20-hydroxyecdysone (20-E) 
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into partially fed, virgin females of Dv still attached to the rabbit host resulted in the 

appearance of the Vg message in whole body RNA extracts, the appearance ofVg in the 

hemolymph, an increase in ovary weight to that of replete (mated) vitellogenic females, 

and the deposition of yolk protein in the eggs. JH injections had no affect on egg 

development in these studies. This current study also shows that the appearance of the V g 

message in whole body RNA during adult female development only occurs after mating 

and feeding to repletion and during oviposition (Fig. 4). This is correlated with the 

appearance of V g in the hemolymph (Fig. 2) and is positively correlated with increased 

hemolymph ecdysteorid levels as has been shown by a number of investigators (Dees et 

al., 1984; Connat et al., 1985; Kaufman, 1991). Also, the Dv Vg message was not found 

in unfed and fed males as would be expected, since this protein is deposited in eggs. In 

toto, the developmental expression of the V g message, the correlation of the appearance 

of the message with hemolymph ecdysteroid levels and the induction of V g in partially 

fed, virgin females by 20-E show that ecdysteroids and not JH are responsible for the 

initiation of vitellogenesis in the ticks so far studied. In addition, Sonenshine (in press) 

has shown that the apparent uptake of V g from the hemolymph into developing oocytes 

during the time of vitellogenesis requires the appearance of the Vg receptor (V gR) in the 

ovaries of mated, replete females. When V gR was knocked out by RN Ai, replete females 

were unable to develop vitellogenic eggs. 

3.4. Tissue sources of the Vg message 

While the fat body is the location of V g synthesis in the Insecta, Crustacea 

apparently can synthesize Vg in the hepatopancreas (analogous to the insect fat body), in 

the ovary or in both locations as previously discussed. Rosell and Coons (1992) 
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suggested that V g protein may also have multiple tissue sources in ticks, i.e., the fat body 

and midgut. This was determined using V g specific monoclonal antibodies and 

immunohistology in the American dog tick. Using AY885250 as a probe on Northern 

blots, we were able to also find the V g message at high levels in total RNA extracts from 

fat body and gut of preovipostional (mated, replete) females of D. variabilis (Fig. 5). In 

these experiments, the message was absent in whole body RNA extracts of the negative 

control (part fed, virgin females) and present in whole body of pre-ovipositional (mated, 

replete) females (the positive control) as expected. Ribosomal protein LlOa RNA levels 

were equivalent in all lanes, indicating equivalent loading of RNA ( data not shown). The 

Vg RNA levels were similar in midgut and fat body, indicating nearly equivalent levels 

of expression of the V g gene in these tissues. These results suggest that V g protein is 

synthesized and likely secreted into the hemolymph in both the midgut and fat body of 

pre-ovipositing female D. variabilis. This is the first confirmation that Vg RNA is 

transcribed in the tick midgut in addition to the fat body. Interesting, Vg was also found 

at low levels in the ovary (Fig. 4). Whether this is fat body contamination of the ovary or 

actually message found in the ovary has not yet been determined. However, the ovary has 

been suggested as a source ofVg in the Crustacea (Avarre t al., 2003; Kung et al., 2004; 

Meusy and Payen, 1988). If the ovary is capable of making V g, this V g apparently cannot 

enter the egg without the ovary V gR. In knockout experiments, RN Ai was shown to 

eliminate the V gR message and yolk uptake by developing oocytes in the American dog 

tick (Sonenshine et al., in press). 

3.5. Possible second Vg 
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Most of the tryptic digest sequences shown in Table 2 were identical with 

portions of the conceptual translation of Dv Vg (shown in shadowed boxes in Fig. 1). 

There was 100% identity of these sequences with the conceptual translation of GP80, a 

partial V g cDNA from B. microplus. Interestingly, the sequence 

"EPL VSTLPVHYLEEL~" is present in Dv V g but contains mismatches (shown in 

bold type in Fig. 1 ). This sequence is repeated several times in both GP80 and Dv V g at 

the carboxy-terminal end. The presence of these similar but not identical sequences in the 

protein isolated from D. variabilis eggs suggests the presence of more than one 

vitellogenin gene. This would not be unexpected, given the multiplicity of vitellogenin 

genes in other organisms. For example, multiple V g genes have been identified in C. 

quadricarinatus (Serrano-Pinto et al., 2004) where two Vg cDNAs have been isolated. In 

the shrimp, Mentapenaeus ensis, there are 4 Vg genes predicted, two of which have been 

cloned (Tsang et al., 2003). Further studies are needed to examine this question in D. 

variabilis. 

In summary, we present the first full-length sequence of the vitellogenin message 

from ticks. V g has a signal peptide, an expected RXXR cleavage site, and lipoprotein and 

von Wille brand factor type D domains typical of other insect V gs sequenced. Apparently 

Vg and· Vn exists as a oligomeric protein (possibly a dimer) in tick hemolymph and eggs, 

respectively. Vn consist of a mixture of the native protein and two subunits produced by 

cleavage at the RXXR site. The V g message was not found in unfed or fed males but was 

present in females after mating and blood feeding to repletion. This developmental 

expression of the message suggest that vitellogenesis is regulated by ecdysteroids which 

have been shown to occur at high levels in the hemolymh at this time and which have 
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been shown to induce the expression of V g RNA in partially fed (virgin) females. There 

are multiple tissues sources of the V g message, i.e., fat body and midgut, and a possible 

second V g message that has not yet been sequenced. 
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Figure Legends 
Fig. 1. Nucleotide and amino acid sequence of vitellogenin (V g) from the American dog tick, 

D. variabilis. The TAG stop codon is underlined. The putative poly-A addition signal is 
double-underlined. Peptides identified by tryptic digestion of egg vitellin are shown as 
shaded boxes. Amino acids in bold represent differences between the D. variabilis cDNA 
and sequences derived by tryptic digest. In particular, the sequence EYPTRHEYPTR, 
while a perfect match with ~e partial V g sequence from B. microplus GP80, is repeated in 
V g from Dv five times with four amino acid differences and twice more with 3 amino acid 
differences. The sequence GLCS, described in the text, is italicized. The fragment that was 
used as a probe for Northern blots is underlined with a stippled line L ......... J. The 
cleavage signal, RXXR, is indicated with an open box. 

Fig. 2. Non-denaturing PAGE of tick hemolymph and eggs. Hemolymph from partly fed 
(virgin) females (lane 1), mated (replete) pre-ovipositional females (lane 2) and mated, 
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replete ovipositing females (lane 3) of D. variabilis was resolved by native PAGE and 
compared with total protein from newly oviposited eggs (lane 4). 3.8 µg of protein were 
loaded in each lane. The mobility of the protein molecular weight markers are indicated 
with arrows on the left: 132K = bovine serum albumin (BSA) dimer; 198K = BSA trimer; 
443K = apoferritin (horse spleen)(Sigma). The gel was stained with Coomassie Blue. * = 

vitellogenin; V n = vitellin. 

Fig. 3. Phylogenetic analysis of selected insect, crustacean and Acari vitellogenins. NCBI 
Accession numbers: AA W78557 (D. variabilis), AAA92143 (B. microplus), CAD56944 
(A. melliphera), AAA18221 (A. aegypti, VgA), AAQ92367 (A. aegypti, VgB), 
AAQ92366 (A. aegypti, VgC), BAA06397 (B. mori), BAA88075 (P. stali Vgl), 
BAA88076 (P. stali V g2), BAA88077 (P. stali V g3), BAD72597 (L. maderae V g2), 
BAB19327 (L. maderae Vgl), AAP47155 (S. invicta Vgl), AA Y22960 (S. invicta Vg2), 
AA Y22961 (S. invicta V g3), AAM48287 (M ensis V g 1 ), AATO 1139 (M ensis V g2), 
AAN40700 (M ensis V g3), AAG 17936 (C. quadricarinatus), BAD98732 (M japonicus), 
ABB89953 (P. monodon), AAR88442 (F. merguiensis), AAP76571 (L. vannamei), 
BAB69831 (M rosenbergii), BADl 1098 (P. hypsinotus), BAD05137 (D: magna). 

Fig. 4. Northern blot of whole body, total RNA extracts from unfed and fed males, partly fed 
(virgin) females, replete (mated) pre-ovipositional (pre-OV) females, replete (mated) 
ovipositing (OV) females, and replete (mated) post-ovipositional (post-OV) females of the 
American dog tick, D. variabilis. The probe used for Northern Blots is shown in Fig. 1. 
The mobility of markers in base pairs is shown on the left. These results were at least · 
duplicated with different samples. 

Fig. 5. Northern blot of total RNA from whole body of partly fed (virgin) and replete (mated) 
pre-ovipositional (pre-OV) females compared to gut, ovary and fat body total RNA of pre­
OV females of the American dog tick, D. variabilis. The probe used for Northern Blots is 
shown in Fig. 1. The mobility of markers in base pairs is shown on the left. These results 
were at least duplicated with different samples. 
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MRV LCG LPLL LLA AAA NGVL• 

1 CGGGGGCAGC ACGCTCGGTT GTCCCCTGTG CACAGCCCAA GGATGCGTGT CCTCTGCGGT CTCCCGCTGC TGCTTCTCGC AGCTGCGGCA AATGGCGTCC 
F D P V P P T Q S S G G V V Y K V R A T V T L K S P E L T V T E G • 

101 TCTTCGATCC GGTACCGCCG ACCCAGTCGT CGGGCGGCGT GGTCTACAAG GTTCGGGCCA CGGTGACCCT GAAGAGCCCN GAACTGACTG TGACCGAGGG 
• A G L Q Y A G D L A L Y P A G Q D T Y E A R F L N F S V V K H E H 

201 CGCTGGACTC CAGTACGCGG GAGACCTGGC CCTCTACCCG GCCGGACAAG ACACGTACGA GGCGCGCTTC CTCAACTTCT CGGTGGTCAA GCACGAGCAC 
LYGG LDN LTA VPLN VSV PLL NETF AVD YSQ HFRY• 

301 CTGTACGGCG GCCTGGACAA CCTGACCGCC GTGCCGCTTA ACGTGTCGGT GCCGCTGCTG AACGAGACCT TCGCGGTGGA CTACTCGCAG CATTTCCGCT 
P V K F V L S A G K V V K Y E V G P E V S T L A H N V Y K S L L T • 

401 ACCCGGTCAA GTTCGTCCTC AGCGCCGGCA AGGTGGTGAA GTACGAGGTC GGCCCCGAGG TCTCGACCTT GGCTCACAAC GTGTACAAGT CCCTGCTGAC 
•LFQ NQVE TPQ EVP TSAA YYE DGV SGHC RVT YEV 

501 GCTCTTCCAG AACCAGGTTG AGACTCCCCA GGAAGTTCCG ACCTCGGCCG CCTACTACGA GGATGGTGTG AGCGGACACT GCCGTGTCAC GTACGAGGTG 
H S L T K N L Y T E G P V Y N A T K T K Y L D D C K Q T R P V H T T • 

601 CACTCGCTGA CCAAGAACCT CTACACCGAG GGCCCGGTGT ACAATGCGAC CAAGACCAAG TACCTGGATG ACTGCAAGCA GACCCGCCCG GTGCACACCA 
R G P A H K G Y Y A V C S K H L P N N Y L P G Y Q E D T S A Y E S • 

701 CCCGGGGTCC TGCTCACAAG GGGTACTACG CCGTGTGTTC CAAGCACCTT CCCAACAACT ACCTTCCAGG ATACCAGGAG GACACTTCCG CTTACGAAAG 
• K P L A G C P E G L G P Y D Y V V A A H E V S Y Y N V S G S L L E 

801 CAAGCCTCTT GCCGGATGCC CCGAGGGACT CGGCCCGTAC GACTACGTCG TGGCCGCCCA CGAGGTTTCG TACTACAACG TCAGTGGCAG CCTTCTCGAG 
S A L T D S L T V L P L L S G S V V V R T R L Q L E L A S L E V P P • 

901 AGCGCCCTCA CCGACAGTCT CACAGTCCTG CCCTTGCTCA GCGGCTCCGT CGTGGTGCGC ACGCGCCTTC AGCTCGAGCT CGCCAGTCTT GAGGTCCCGC 
T T P V Q Y Q G E P H T S L E L H L P E A A E Y L D L P V Y $ Y L • 

1001 CCACGACTCC CGTCCAGTAC CAGGGCGAGC CCCACACCTC GCTCGAGCTT CACCTTCCCG AGGCCGCCGA GTACCTCGAC CTCCCGGTCT ACAGCTACCT 
· V G S S E Q V K P E V F T Q V L D Q V A E E L V S L E L E T E A K 

1101 CGTGGGCAGC TCCGAGCAGG TCAAGCCCGA AGTCTTCACT CAGGTGCTTG ATCAGGTCGC CGAGGAGCTT GTGAGCCTCG AGCTCGAGAC CGAGGCCAAG 
K T P A L M L K L V H M V S L L N T D Q L K Q A L P Q S L L T ·K T S • 

1201 AAGACTCCCG CGCTCATGCT GAAGCTGGTG CACATGGTCT CGCTCCTCAA CACCGATCAG CTGAAGCAGG CTCTGCCGCA GTCCCTCCTG ACCAAGACCA 
E L E P K E Q V L R A L Y V D L L G Q A G S K S A V E V A V H L V • 

1301 GCGAGCTTGA ACCCAAGGAG CAGGTCCTCA GGGCCCTGTA CGTCGACCTT CTCGGCCAGG CCGGCAGCAA GTCGGCCGTG GAAGTGGCCG TCCACCTTGT 
. K E E V L s L y E A T AA L F ® Q L s V F s A y V D K E T V E L L L 

1401 TAAGGAGGAG GTGCTGAGCC TGTACGAGGC TACCCGCCTG TTCCGTCAGC TGTCTGTCTT CTCGGCCTAC GTCGACAAGG AGACCGTCGA GCTTCTTTTG 
ELCK TTE TVL KPLV KVA VCD ALGE AVK KAC PTGV• 

1501 GAGCTGTGCA AGACCACCGA GACCGTTCTC AAGCCCCTCG TCAAGGTCGC TGTCTGCGAT GCTCTTGGTG AGGCCGTGAA GAAGGCCTGT CCCACTGGGG 
H Y D T V S T T S Y K S S W R R I P K I K S R Y E Q T P S V ·p K H • 

1601 TCCACTACGA CACCGTTTCC ACGACTTCTT ACAAGAGCAG CTGGCGCCGC ATACCGAAGA TCAAGTCCCG TTACGAGCAG ACTCCCTCCG TGCCGAAACA 
• L L P F V P V E R L V L P L E K Q C T V A D L V E Y V K V L E E A 

1701 TCTGCTGCCA TTCGTGCCCG TTGAGCGGCT TGTGCTCCCC CTGGAAAAGC AGTGCACTGT CGCTGACCTC GTGGAGTACG TTAAGGTTCT TGAGGAGGCC 
L K T T T D F K ~ V · ti . Y: L lf A L ~ V A K P E V L P V L V S Y L N • 

1801 CTGAAGACCA CCACGGACTT CAAGGTCCTG GTCGGCTACT TGAACGCTCT TGGCAAGGTC GCCAAGCCCG AAGTGCTGCC CGTGCTTGTG AGCTACCTCA 
G T A E N L Y Q L V E E G E E Y Y E T V Y F V K (K A V i;--rA- L S II • 

1901 ACGGCACCGC CGAGAACCTG TACCAGCTGG TGGAGGAAGG AGAGGAATAC TACGAGACTG TCTACTTTGT CAAGAAGGCT GTCCTCCTCG CCCTCAGTCA 
-Y-- [ P j E V S P L V R T V L L N V S E P V D V R T L A F D V 

2001 CGTTGTGGAG TACTTCCCTA AGGAGGTGAG CCCCCTGGTC CGTACTGTCC TGCTCAACGT CAGTGAACCA GTTGACGTGA GGACCCTGGC CTTCGACGTC 
WLKS VPT KWD LQQV SLV VKL DRSL ELK SYV YTAL• 

2101 TGGCTCAAGT CCGTGCCCAC CAAGTGGGAC CTGCAGCAGG TGTCCCTCGT CGTCAAGCTT GACCGTAGTC TGGAGCTCAA GAGCTACGTG TACACCGCCC 
K S V L K D K ij::J · I• ,· ll H V L A S ij V R G V F V H Y E A L N V G P R • 

2201 TCAAGTCCGT CCTCAAGGAC AAGCACCCGG CCAACCACGT TCTTGCTAGC CGTGTCCGTG GAGTCTTCGT GCACTACGAG GCTCTGAACG TTGGTCCCCG 
• Y S T Y A K K T Y Y D V A R N L G F E S V V K H V A N N I S Y F P 

2301 CTACTCCACG TACGCCAAGA AGACCTACTA CGACGTCGCC AGGAACCTCG GATTTGAGTC CGTCGTGAAG CACGTGGCCA ACAACATCTC CTACTTCCCC 
T Y L H A G L K L'JC L G P Y V __.! !l' L L E G ij L"= L L K G G E K F L N E • 

2401 ACTTATCTCC ACGCCGGATT GAAGTACAAC CTCGGACCCT ACGTCAAGAC CCTGCTCGAG GGCAAGCTCC TGCTGAAGGG TGGTGAGAAG TTCCTTAACG 
V F S T E G T T T F L R R V T E A F T R K V K S P Y N T T P Y E T • 
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2501 AGGTCTTCTC TACCGAGGGC ACGACCACGT TCCTGAGACG TGTCACCGAG GCCTTCACCA GGAAAGTCAA GTCCCCCTAC AACACGACTC CCTACGAAAC 
• S T K Y S V V K E L N. L K T R K V E S P K 7\ V L F ::x::::J F L G G D A 

2601 CAGCACCAAG TATTCCGTTG TCAAGGAGCT GAACCTTAAG ACTCGCAAGG TGGAGTCCCC CAAGGCCGTG CTGTTCGCCA AGTTCCTCGG TGGAGACGCT 
V L P L D K E L F E Q L K N E L V E L A Q K A S T T G P L T T H L V • 

2701 GTGCTGCCCC TGGACAAGGA GCTGTTTGAG CAACTCAAGA ACGAACTGGT GGAGCTCGCC CAAAAGGCCT CCACGACTGG CCCGCTGACC ACCCATCTCG 
R V L L P K K V A H V E P T V V G L P V V Q T V L H P I V V S L K • 

2801 TGCGCGTGCT GCTGCCCAAG AAGGTCGCCC ACGTCGAGCC TACCGTCGTC GGTCTGCCCG TGGTTCAGAC CGTCCTGCAC CCGATCGTTG TGTCCCTGAA 
• L K D V S L Q V D S T V D S L L P V T F N V T G T V Q P L V L S V 

2901 GCTCAAGGAT GTCTCCCTGC AGGTCGACAG TACAGTCGAC TCTCTCCTGC CCGTCACCTT CAACGTCACG GGAACCGTGC AGCCCCTCGT CCTGAGCGTC 
K Q H R V F V P A E L T E E S P S V V H T S V K H L H F K T H L S L • 

3001 AAGCAGCACC GAGTGTTCGT GCCSGCCGAG CTGACCGAGG AGTCACCCAG CGTTGTCCAC ACCAGCGTCA AGCACCTGCA CTTCAAGACT CACCTCTCCC 
G F N K Y E K K V K V T V K P T F G P A L L S A V S T E H V V E T • 

3101 TGGGCTTCAA CAAGTACGAG AAGAAGGTCA AGGTCACCGT CAAGCCGACC TTCGGCCCCG CCCTGCTCAG CGCCGTCAGC ACGGAGCACG TCGTGGAGAC 
•PSP FLLL EKH AVD PKKV MDT IVK PFVY HRV YET 

3201 TCCCAGCCCG TTCCTCCTGC TCGAGAAACA CGCCGTCGAC CCCAAGAAGG TCATGGACAC CATCGTGAAG CCCTTCGTGT ACCACCGCGT CTACGAGACC 
K V V N L E V D A V S H G P F A P L P L Y G S L Y H L S S E R M P K • 

3301 AAGGTCGTGA ACCTGGAGGT TGACGCCGTC AGCCACGGTC CGTTCGCTCC TCTGCCGCTG TACGGAAGTC TGTATCACTT GTCTTCCGAG CGCATGCCGA 
L L Q Y L S H Q A S K Q H L L R I N V K P Y E K D P V S E W V A T • 

3401 AGCTCCTCCA GTACCTGTCT CACCAAGCAA GCAAGCAACA CCTGCTTAGG ATCAACGTCA AGCCTTACGA GAAGGACCCC GTCAGCGAGT GGGTGGCCAC 
• F K Y E N N L D Y L M K T T L K K V Y T A A R T A T Y D E N Q E T 

3501 CTTCAAGTAC GAGAACAACC TGGACTACCT GATGAAGACC ACTCTGAAGA AGGTCTACAC CGCGGCCAGG ACCGCCACCT ACGACGAGAA CCAGGAGACG 
P Y D Y M L S E H V T P R P T T Y A A Y E E E D S Y E Y Y P E Y P Y • 

3601 CCCTACGATT ACATGCTCTC CGAGCACGTT ACACCTAGAC CCACGACCTA CGCGGCCTAC GAAGAAGAAG ACAGTTATGA ATACTATCCC GAGTACCCGT 
LLN KTL VKHV LNV TLE GKLE GAV KQL TKLD LAY• 

3701 ACCTGCTGAA CAAGACCCTT GTGAAGCACG TGCTCAACGT CACCCTGGAA GGCAAGCTGG AAGGCGCCGT CAAGCAGCTG ACCAAGCTGG ACCTCGCCTA 
• H H S L N K T L K B · y -- Y V 1) V JI T L T K P L V S L F L N V S S P V 

3801 CCACCACTCG CTCAACAAGA CCCTCAAGCA CTACTACGTC GACGTCAAGA CCCTCACCAA GCCCCTGGTG TCTCTCTTCC TGAACGTATC GAGCCCCGTT 
P P S P F W Y V P S Y L G N D L M N A T L Y L T Y G D E P E P F V V • 

3901 CCCCCGAGCC CCTTCTGGTA CGTGCCTTCC TACTTGGGCA ACGACCTCAT GAACGCCACC CTGTACCTCA CCTACGGCGA CGAGCCGGAG CCTTTCGTTG 
T Y N A T K T E E R L L G L H A Y D A T P L L H W F V P Q C L A D • 

4001 TCACCTACAA CGCCACCAAG ACCGAGGAGC GGCTCCTGGG CCTGCATGCA TACGACGCCA CTCCGCTGCT GCACTGGTTC GTGCCCCAGT GTCTGGCCGA 
•QHA GHTV SYA CSL ATVF DAH LNQ QVVA FKV PAQ 

4101 CCAGCACGCC GGTCACACCG TCAGCTACGC CTGCAGCCTG GCCACCGTCT TCGACGCTCA CCTCAACCAG CAGGTTGTCG CCTTCAAGGT GCCCGCGCAG 
V S P K V K N L A L K V P S F L K F K L F P Y A S F Y V L P F V Q K • 

4201 GTCAGCCCCA AGGTGAAGAA CCTGGCGCTT AAGGTCCCCT CGTTCCTCAA GTTCAAGCTG TTCCCGTACG CCAGCTTCTA CGTCCTTCCG TTCGTCCAGA 
E E Y E V V F R L N K T D V N P Y V S V A Y G E L V L P G E K V V • 

4301 AGGAAGAGTA CGAGGTCGTG TTCAGGCTAA ACAAGACTGA CGTGAACCCG TACGTGAGCG TAGCTTACGG CGAACTGGTG CTGCCCGGCG AAAAGGTTGT 
• L N D L K L S K Y S V P N L L L S V Y D R L K H G L F K G Y P H Q 

4401 CCTCAACGAC CTCAAGCTGT CGAAGTACTC TGTTCCCAAC CTGCTACTGT CCGTCTACGA CCGCCTCAAG CACGGACTCT TCAAGGGCTA CCCGCACCAG 
p C s V G K H w V R T y D N V s F p L E V R p H C K IY ~ ',Ii ' V . T :s ' b C s • 

4501 CCTTGCAGCG TGGGCAAGCA CTGGGTCCGC ACCTACGACA ACGTGAGCTT CCCGCTCGAG GTTAGGCCTC ACTGCAAGTA CCTCGTCACC AGCGACTGCA 
CE:i H D F A V V A L p L D L A V G T K ,_.J, I r::T ,l, G p · .. T ·Y · V·. S>lf:' f 

4601 GCGCCAAGCA CGACTTCGCC GTCGTTGCTC TGCCTCTTGA CCTCGCCGTT GGAACCAAGA AGCTCATCGT CCAGCTGGGT CCGACCGTGG TGGAGCTTCC 
L t ::_j A E V L L T V N G T Y Y V A N T T Q D V V L P Y K W D 

4701 GCCGCCCGAT CTGTACAAGG CCGAAGTCCT ACTGACGGTC AACGGCACCT ACTACGTTGC CAACACCACC CAGGACGTCG TGCTGCCTTA CAAGTGGGAC 
R K L F V T V Y P T S G P H D P P V V E L T T S L K T F K L L F D G • 

4801 CGCAAACTGT TCGTCACCGT GTACCCGACC AGCGGACCTC ACGACCCGCC CGTTGTCGAG CTCACCACCT CGCTCAAGAC CTTCAAGCTG CTGTTCGACG 
VNF FVW VNPL YQG KTC GLCS NYD NEP YHEF VTP• 

4901 GCGTCAACTT CTTCGTTTGG GTGAACCCGC TGTACCAGGG AAAGACCTGC GGTCTCTGCA GTAACTACGA CAATGAGCCG TACCACGAGT 
. E N y L V s N y s E F V A s y G F G L p Q C K E p L V » y % 

5001 CGAGAACTAC CTCGTGTCCA ACTATTCCGA GTTCGTGGCT AGCTATGGTT TCGGCCTTCC CCAGTGCAAG GAGCCCCTGG TTCCCGTCTA CCCTCTCCAC 



L>,~ g~g---:-:-;; P V G Y E A G Y P S H P E Y P S H S K Y P S H H K Y P • 
5101 TACCTCGACG AACTGAAGAA GCCCGTGGGA TACGAGGCCG GCTACCCGTC ACACCCCGAG TACCCCAGCC ACTCGAAGTA CCCGTCCCAC CACAAGTATC 

s H K lti1~<jtf fi.,j:,&ji\;,.j31\t :£11,t,;jf3)1;,,f;;.ijitt~- E -•.. E 
5201 CGAGCCACAA GGAGTACCCT ACCCACCACA AGTACCCCAG CCACGAAGAG TACCCAACCC ACCACAAGTA CCCCAGCCAC GAAGAGTACC CAACCCATCA ········-E·-- -----E··- ··-E··-·· .. 
5301 CAAGTACCCC AGCCACGAAG AGTACCCAAC CCACCACAAG TACCCCAGCC ACGAAGAGTA CCCAACCCAC CACAAGTACC CCAGCCACGA AGAGTACCCA . ---K···K·····y"···p···-r"·-·a··---K·--H·-·-p·--··r····H·-·a···· ·-·H·-·"i<·-··y • 
5401 ACCCACCACA AGTACCCTAC GCACAAGAAG TACCCAACTC ACAAGCACCC GACCCACCAC GAGTACCCGA CCCACCACAA GTACCCGACC CACCACAAGT 

P s· H H E Y P P S R E H Y P Y S P S L Q R E G * 
5501 ACCCGTCCCA CCACGAGTAC CCTCCCAGCC GCGAACACTA CCCGTACAGC CCGAGCCTCC AGCGCGAAGG TTAGCATATT TGTTTTTTAA GACACGGTAA 
5601 TATCACTTCA_AAAAATAGGT_TTCAGGCGCA_ACGTGGCGTC_GCTATGTTCA_TCTACAAGCC __ CAAACTTGAT_TCTTGCGTGT_ATTGCACTTG_TTTTGGAA.Aa 
5701 I.AA.8,CTCAAA_CTCGGTTTGA_CAGAGAAAAA_AAAAAAAAAA_AAAA 
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A.aegypti VgC 
I 

P. stali Vg2 B. mori 
P. stali.Vg1 

L. maderae v92(· staliVg3 

A. aegypti VgA 

A. aegypti VgB 

A. mellifera 
S. invicta Vg1 

S. invicta Vg2 

L. maderae Vg1 
£ « S. invicta Vg3 

P. hypsinotus --------

M. rosenbergii 

M. ensisVg3 

M. ensisVg1 

L. vannamei 

F. rnerguiensis 
0.1 

f}3 

P. monodon 

D. magna 

B. microplus 

D. variabilis 
C. quadricarinatus 
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Fig. 5
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~Mer 
Amino acid Number % 

Ala 101 5.5 

Arg 42 2.3 

Asn 56 3.0 

Asp 60 3.3 

Cys 17 0.9 

Gin 49 2.7 

Glu 133 7.2 

Gly 74 4.0 

His· 89 4.8 

Ile 7 0.4 

Leu 237 12.9 

Lys 144 7.8 

Met 8 0.4 

Phe 57 3.1 

Pro 145 7.9 

Ser 121 6.6 

Tor 138 7.5 

Trp 9 0.5 

Tyr 133 7.2 

Val 223 12.1 

• 
Deborah, Need a title line for Table 1 on top of table. 



Table 2: Peptides identified from egg vitellin. 

Sequence Mass Charge 

KAVLLALSHVVEYFPK 1814.06 3 

VLVGYLNALGK 1146.69 2 

YLVTSDCSAK 1143.51 2 

HPANHVLASR 1101.59 3 

KLIVQLGPTVVELPPPDLYK 2219.3 3 

YNLGPYVK 953.509 2 

HYYVDVK 923.462 2 

EYPTRHEYPTR 1448.69 

TLLEGK 660.393 

AVLFAK 648.408 

DKHPANHVLASR 1344.71 3 

EPLVSTLPVHYLEELKK 1995.12 3 

LLLK 486.365 


	Old Dominion University
	ODU Digital Commons
	2007

	Sequence and the Developmental and Tissue-Specific Regulation of the First Complete Vitellogenin Message From Ticks
	Deborah M. Thompson
	Sayed M.S. Khalil
	Laura A. Jeffers
	Daniel E. Sonenshine
	Robert D. Mitchell
	See next page for additional authors
	Repository Citation
	Authors


	tmp.1459781735.pdf.0hfgN

