608 research outputs found
Meson Transition Form Factors From A QCD Model Field Theory
We discuss form factors and coupling constants for the , and interactions generated by a model
field theory that produces finite size meson modes. The approach
implements dressing of the vertices and propagators consistent with dynamical
chiral symmetry breaking, gauge invariance, quark confinement and perturbative
QCD.Comment: 10 pages incl 4 figs in a single gzip-ed, uuencoded Postscript file;
Paper presented at {\it The International School of Nuclear Physics: Quarks
in Hadrons and Nuclei}, Erice, September 1995; Proceedings to appear in Prog.
Part. Nucl. Phys. {\bf 36
The Quark-Photon Vertex and the Pion Charge Radius
The rainbow truncation of the quark Dyson-Schwinger equation is combined with
the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study
the low-momentum behavior of the pion electromagnetic form factor. With model
gluon parameters previously fixed by the pion mass and decay constant, the pion
charge radius is found to be in excellent agreement with the data. When
the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex
directly from the quark propagator, less than half of is generated.
The remainder of is seen to be attributable to the presence of the
-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure
Charge symmetry breaking via rho-omega mixing from model quark-gluon dynamics
The quark-loop contribution to the mixing self-energy
function is calculated using a phenomenologically successful QCD-based model
field theory in which the and mesons are composite
bound states. In this calculation the dressed quark propagator, obtained from a
model Dyson-Schwinger equation, is confining. In contrast to previous studies,
the meson- vertex functions are characterised by a strength and range
determined by the dynamics of the model; and the calculated off-mass-shell
behaviour of the mixing amplitude includes the contribution from the calculated
diagonal meson self-energies. The mixing amplitude is shown to be very
sensitive to the small isovector component of dynamical chiral symmetry
breaking. The spacelike quark-loop mixing-amplitude generates an insignificant
charge symmetry breaking nuclear force.Comment: 11 Pages, 3 figures uuencoded and appended to this file, REVTEX 3.0.
ANL-PHY-7718-TH-94, KSUCNR-004-94. [!! PostScript file format corrected.
Retrieve by anonymous ftp from theory.phy.anl.gov (130.202.20.190), directory
pub: mget wpfig*.ps Three files.
Off-Shell Axial Anomaly via the \gamma^* \pi^0 -> \gamma Transition
The form factor, including the extension
off the pion mass-shell, is obtained from a generalized impulse approximation
within a QCD-based model field theory known to provide an excellent description
of the pion charge form factor. This approach implements dressing of the vertex
functions and propagators consistent with dynamical chiral symmetry breaking,
gauge invariance, quark confinement and perturbative QCD. Soft nonperturbative
behavior, dictated by the axial anomaly, is found to evolve to the perturbative
QCD limit only for \mbox{}.Comment: 10 Pages, 3 figures (uuencoded and appended), REVTE
Electromagnetic form factors of light vector mesons
The electromagnetic form factors G_E(q^2), G_M(q^2), and G_Q(q^2), charge
radii, magnetic and quadrupole moments, and decay widths of the light vector
mesons rho^+, K^{*+} and K^{*0} are calculated in a Lorentz-covariant,
Dyson-Schwinger equation based model using algebraic quark propagators that
incorporate confinement, asymptotic freedom, and dynamical chiral symmetry
breaking, and vector meson Bethe-Salpeter amplitudes closely related to the
pseudoscalar amplitudes obtained from phenomenological studies of pi and K
mesons. Calculated static properties of vector mesons include the charge radii
and magnetic moments: r_{rho+} = 0.61 fm, r_{K*+} = 0.54 fm, and r^2_{K*0} =
-0.048 fm^2; mu_{rho+} = 2.69, mu_{K*+} = 2.37, and mu_{K*0} = -0.40. The
calculated static limits of the rho-meson form factors are similar to those
obtained from light-front quantum mechanical calculations, but begin to differ
above q^2 = 1 GeV^2 due to the dynamical evolution of the quark propagators in
our approach.Comment: 8 pages of RevTeX, 5 eps figure
The Ginzburg regime and its effects on topological defect formation
The Ginzburg temperature has historically been proposed as the energy scale
of formation of topological defects at a second order symmetry breaking phase
transition. More recently alternative proposals which compute the time of
formation of defects from the critical dynamics of the system, have been
gaining both theoretical and experimental support. We investigate, using a
canonical model for string formation, how these two pictures compare. In
particular we show that prolonged exposure of a critical field configuration to
the Ginzburg regime results in no substantial suppression of the final density
of defects formed. These results dismiss the recently proposed role of the
Ginzburg regime in explaining the absence of topological defects in 4He
pressure quench experiments.Comment: 8 pages, 5 ps figure
Ecologically relevant measures of tolerance to potentially lethal temperatures
The acute thermal tolerance of ectotherms has been measured in a variety of ways; these include assays where organisms are
shifted abruptly to stressful temperatures and assays where organisms experience temperatures that are ramped more slowly to
stressful levels. Ramping assays are thought to be more relevant to natural conditions where sudden abrupt shifts are unlikely to
occur often, but it has been argued that thermal limits established under ramping conditions are underestimates of true thermal
limits because stresses due to starvation and/or desiccation can arise under ramping. These confounding effects might also impact the variance and heritability of thermal tolerance. We argue here that ramping assays are useful in capturing aspects of ecological relevance even though there is potential for confounding effects of other stresses that can also influence thermal limits in nature. Moreover, we show that the levels of desiccation and starvation experienced by ectotherms in ramping assays will often be minor unless the assays involve small animals and last for many hours. Empirical data illustrate that the combined effects of food and humidity on thermal limits under ramping and sudden shifts to stressful conditions are unpredictable; in Drosophila melanogaster the presence of food decreased rather than increased thermal limits, whereas in Ceratitis capitata they had little impact. The literature provides examples where thermal limits are increased under ramping presumably because of the potential for physiological changes leading to acclimation. It is unclear whether heritabilities and population differentiation will necessarily be lower under ramping because of confounding effects. Although it is important to clearly define experimental methods, particularly when undertaking comparative assessments, and to understand potential confounding effects, thermotolerance assays based on ramping remain an important tool for understanding and predicting species responses to environmental change. An important area for further development is to identify the impact of rates of temperature change under field and laboratory conditions
Markers of cardiac dysfunction in cognitive impairment and dementia
Markers of cardiac dysfunction such as amino terminal pro-brain natriuretic peptide (NTpro-BNP) and high sensitivity cardiac troponin T (hs-cTnT) may be associated with dementia. However, limited data exist on their association with either pre-dementia stages, that is, cognitive impairment no dementia (CIND), or the burden of cerebrovascular diseases (CeVD). We therefore, examined the association of these biomarkers of cardiac dysfunction with CeVD in both CIND and dementia. A case–control study, with cases recruited from memory clinics and controls from memory clinics and community. All subjects underwent collection of blood samples, neuropsychological assessment, and neuroimaging. Subjects were classified as CIND and dementia based on clinical criteria whilst significant CeVD was defined as the presence of cortical infarcts and/or more than 2 lacunes and/or confluent white matter lesions in two regions of brain on Age-Related White Matter Changes Scale. We included a total of 35 controls (mean age: 65.9 years), 78 CIND (mean age: 70.2 years) and 80 cases with dementia (mean age: 75.6 years). Plasma concentrations of hs-cTnT were associated significantly with CeVD in both CIND (odds ratios [OR]: 9.05; 95% confidence interval [CI]: 1.64–49.79) and dementia (OR: 16.89; 95%CI: 2.02–142.67). In addition, NTpro-BNP was associated with dementia with CeVD (OR: 7.74; 95%CI: 1.23–48.58). These associations were independent of other vascular risk factors. In this study, we showed that plasma NTproBNP and hs-cTnT are associated with dementia and CIND, only when accompanied by presence of CeVD
Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg-ferromagnet EuS
By inelastic scattering of polarized neutrons near the (200)-Bragg
reflection, the susceptibilities and linewidths of the spin waves and the
longitudinal spin fluctuations were determined separately. By aligning the
momentum transfers q perpendicular to both \delta S_sw and the spontaneous
magnetization M_s, we explored the statics and dynamics of these modes with
transverse polarizations with respect to q. In the dipolar critical regime,
where the inverse correlation length kappa_z(T) and q are smaller than the
dipolar wavenumber q_d, we observe:(i) the static susceptibility of \delta
S_sw^T(q) displays the Goldstone divergence while for \delta S_z^T(q) the
Ornstein-Zernicke shape fits the data with a possible indication of a
thermal(mass-)renormalization at the smallest q-values, i.e. we find
indications for the predicted 1/q divergence of the longitudinal
susceptibility; (ii) the spin wave dispersion as predicted by the
Holstein-Primakoff theory revealing q_d=0.23(1)\AA^{-1}in good agreement with
previous work in the paramagnetic and ferromagnetic regime of EuS; (iii) within
experimental error, the (Lorentzian) linewidths of both modes turn out to be
identical with respect to the q^2-variation, the temperature independence and
the absolute magnitude. Due to the linear dispersion of the spin waves they
remain underdamped for q<q_d. These central results differ significantly from
the well known exchange dominated critical dynamics, but are quantitatively
explained in terms of dynamical scaling and existing data for T>=T_C. The
available mode-mode coupling theory, which takes the dipolar interactions fully
into account, describes the gross features of the linewidths but not all
details of the T- and q-dependencies. PACS: 68.35.Rh, 75.40.GbComment: 10 pages, 7 figure
Low-energy QCD: Chiral coefficients and the quark-quark interaction
A detailed investigation of the low-energy chiral expansion is presented
within a model truncation of QCD. The truncation allows for a phenomenological
description of the quark-quark interaction in a framework which maintains the
global symmetries of QCD and permits a expansion. The model dependence
of the chiral coefficients is tested for several forms of the quark-quark
interaction by varying the form of the running coupling, , in the
infrared region. The pattern in the coefficients that arises at tree level is
consistent with large QCD, and is related to the model truncation.Comment: 28 pages, Latex, 6 postscript figures available on request to
[email protected]
- …