5,610 research outputs found

    Optomechanically induced transparency and cooling in thermally stable diamond microcavities

    Full text link
    Diamond cavity optomechanical devices hold great promise for quantum technology based on coherent coupling between photons, phonons and spins. These devices benefit from the exceptional physical properties of diamond, including its low mechanical dissipation and optical absorption. However the nanoscale dimensions and mechanical isolation of these devices can make them susceptible to thermo-optic instability when operating at the high intracavity field strengths needed to realize coherent photon--phonon coupling. In this work, we overcome these effects through engineering of the device geometry, enabling operation with large photon numbers in a previously thermally unstable regime of red-detuning. We demonstrate optomechanically induced transparency with cooperativity > 1 and normal mode cooling from 300 K to 60 K, and predict that these device will enable coherent optomechanical manipulation of diamond spin systems

    Single-crystal diamond low-dissipation cavity optomechanics

    Get PDF
    Single-crystal diamond cavity optomechanical devices are a promising example of a hybrid quantum system: by coupling mechanical resonances to both light and electron spins, they can enable new ways for photons to control solid state qubits. However, realizing cavity optomechanical devices from high quality diamond chips has been an outstanding challenge. Here we demonstrate single-crystal diamond cavity optomechanical devices that can enable photon-phonon-spin coupling. Cavity optomechanical coupling to 2 GHz2\,\text{GHz} frequency (fmf_\text{m}) mechanical resonances is observed. In room temperature ambient conditions, these resonances have a record combination of low dissipation (mechanical quality factor, Qm>9000Q_\text{m} > 9000) and high frequency, with Qm⋅fm∼1.9×1013Q_\text{m}\cdot f_\text{m} \sim 1.9\times10^{13} sufficient for room temperature single phonon coherence. The system exhibits high optical quality factor (Qo>104Q_\text{o} > 10^4) resonances at infrared and visible wavelengths, is nearly sideband resolved, and exhibits optomechanical cooperativity C∼3C\sim 3. The devices' potential for optomechanical control of diamond electron spins is demonstrated through radiation pressure excitation of mechanical self-oscillations whose 31 pm amplitude is predicted to provide 0.6 MHz coupling rates to diamond nitrogen vacancy center ground state transitions (6 Hz / phonon), and ∼105\sim10^5 stronger coupling rates to excited state transitions.Comment: 12 pages, 5 figure

    Efficient telecom to visible wavelength conversion in doubly resonant GaP microdisks

    Get PDF
    Resonant second harmonic generation between 1550 nm and 775 nm with outside efficiency >4.4×10−4 mW−1> 4.4\times10^{-4}\, \text{mW}^{-1} is demonstrated in a gallium phosphide microdisk cavity supporting high-QQ modes at visible (Q∼104Q \sim 10^4) and infrared (Q∼105Q \sim 10^5) wavelengths. The double resonance condition was satisfied through intracavity photothermal temperature tuning using ∼360 μ\sim 360\,\muW of 1550 nm light input to a fiber taper and resonantly coupled to the microdisk. Above this pump power efficiency was observed to decrease. The observed behavior is consistent with a simple model for thermal tuning of the double resonance condition.Comment: 6 pages, 4 figure

    Growing Pains or Opportunities? A Customer Survey of Three Farmers\u27 Markets in One Rural Community

    Get PDF
    The continued growth of farmers\u27 markets is presenting new challenges to Extension. As the number of markets expands, how can Extension help those in the same community work together for mutual benefit? The study reported here examined similarities and differences among customers attending three different farmers\u27 markets within a single locality in Gettysburg, Pennsylvania. Based on 370 customer surveys, study results underscore the diversity of markets operating within the same community and provide insights into ways Extension might assist markets to work together to expand their shared customer base, increase revenues, and better serve local residents

    Realizing QQ > 300,000 in diamond microdisks for optomechanics via etch optimization

    Full text link
    Nanophotonic structures in single--crystal diamond (SCD) that simultaneously confine and co-localize photons and phonons are highly desirable for applications in quantum information science and optomechanics. Here we describe an optimized process for etching SCD microdisk structures designed for optomechanics applications. This process allows the optical quality factor, QQ, of these devices to be enhanced by a factor of 4 over previous demonstrations to Q∼335,000Q \sim 335,000, which is sufficient to enable sideband resolved coherent cavity optomechanical experiments. Through analysis of optical loss and backscattering rates we find that QQ remains limited by surface imperfections. We also describe a technique for altering microdisk pedestal geometry which could enable reductions in mechanical dissipation.Comment: Published versio

    The Impact of Soil Conservation Policies on Carbon Sequestration in Agricultural Soils of the Central United States

    Get PDF
    To evaluate the impact of conservation policies on soil organic carbon in agricultural soils, the authors link information from the 1992 National Resources Inventory (NRI) database and the extensive physical data on soils and climate from the SOILS5 database. These data serve as input for a biophysical process model calibrated for the conditions prevalent in the study region. Results indicate that reducing soil erosion, rather than removing land from agricultural production, is the most effective way to increase carbon sequestration and enhance soil quality
    • …
    corecore