6 research outputs found

    Procalcitonin and C-reactive protein to rule out early bacterial coinfection in COVID-19 critically ill patients

    Full text link
    PurposeAlthough the prevalence of community-acquired respiratory bacterial coinfection upon hospital admission in patients with coronavirus disease 2019 (COVID-19) has been reported to be < 5%, almost three-quarters of patients received antibiotics. We aim to investigate whether procalcitonin (PCT) or C-reactive protein (CRP) upon admission could be helpful biomarkers to identify bacterial coinfection among patients with COVID-19 pneumonia.MethodsWe carried out a multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish intensive care units (ICUs). The primary outcome was to explore whether PCT or CRP serum levels upon hospital admission could predict bacterial coinfection among patients with COVID-19 pneumonia. The secondary outcome was the evaluation of their association with mortality. We also conducted subgroups analyses in higher risk profile populations.ResultsBetween 5 February 2020 and 21 December 2021, 4076 patients were included, 133 (3%) of whom presented bacterial coinfection. PCT and CRP had low area under curve (AUC) scores at the receiver operating characteristic (ROC) curve analysis [0.57 (95% confidence interval (CI) 0.51-0.61) and 0.6 (95% CI, 0.55-0.64), respectively], but high negative predictive values (NPV) [97.5% (95% CI 96.5-98.5) and 98.2% (95% CI 97.5-98.9) for PCT and CRP, respectively]. CRP alone was associated with bacterial coinfection (OR 2, 95% CI 1.25-3.19; p = 0.004). The overall 15, 30 and 90 days mortality had a higher trend in the bacterial coinfection group, but without significant difference. PCT & GE; 0.12 ng/mL was associated with higher 90 days mortality.ConclusionOur study suggests that measurements of PCT and CRP, alone and at a single time point, are not useful for ruling in or out bacterial coinfection in viral pneumonia by COVID-19

    The role of immune suppression in COVID-19 hospitalization: clinical and epidemiological trends over three years of SARS-CoV-2 epidemic

    Get PDF
    Specific immune suppression types have been associated with a greater risk of severe COVID-19 disease and death. We analyzed data from patients &gt;17 years that were hospitalized for COVID-19 at the “Fondazione IRCCS Caâ€Č Granda Ospedale Maggiore Policlinico” in Milan (Lombardy, Northern Italy). The study included 1727 SARS-CoV-2-positive patients (1,131 males, median age of 65 years) hospitalized between February 2020 and November 2022. Of these, 321 (18.6%, CI: 16.8–20.4%) had at least one condition defining immune suppression. Immune suppressed subjects were more likely to have other co-morbidities (80.4% vs. 69.8%, p &lt; 0.001) and be vaccinated (37% vs. 12.7%, p &lt; 0.001). We evaluated the contribution of immune suppression to hospitalization during the various stages of the epidemic and investigated whether immune suppression contributed to severe outcomes and death, also considering the vaccination status of the patients. The proportion of immune suppressed patients among all hospitalizations (initially stable at &lt;20%) started to increase around December 2021, and remained high (30–50%). This change coincided with an increase in the proportions of older patients and patients with co-morbidities and with a decrease in the proportion of patients with severe outcomes. Vaccinated patients showed a lower proportion of severe outcomes; among non-vaccinated patients, severe outcomes were more common in immune suppressed individuals. Immune suppression was a significant predictor of severe outcomes, after adjusting for age, sex, co-morbidities, period of hospitalization, and vaccination status (OR: 1.64; 95% CI: 1.23–2.19), while vaccination was a protective factor (OR: 0.31; 95% IC: 0.20–0.47). However, after November 2021, differences in disease outcomes between vaccinated and non-vaccinated groups (for both immune suppressed and immune competent subjects) disappeared. Since December 2021, the spread of the less virulent Omicron variant and an overall higher level of induced and/or natural immunity likely contributed to the observed shift in hospitalized patient characteristics. Nonetheless, vaccination against SARS-CoV-2, likely in combination with naturally acquired immunity, effectively reduced severe outcomes in both immune competent (73.9% vs. 48.2%, p &lt; 0.001) and immune suppressed (66.4% vs. 35.2%, p &lt; 0.001) patients, confirming previous observations about the value of the vaccine in preventing serious disease

    Diffusible melanin-related metabolites are potent inhibitors of lipid peroxidation.

    No full text
    Although it has long been known that epidermal melanocytes produce and excrete a number of melanin-related metabolites, including 5,6-dihydroxyindole (DHI), 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and 5-S-cysteinyldopa (CD), the possible functional significance of these compounds has been so far largely overlooked. We report now evidence that DHI, DHICA and CD exert potent inhibitory effects in different in vitro models of lipid peroxidation. The compounds, at 100 mu M concentration, substantially decreased malondialdehyde (MDA) formation by lipid peroxidation in rat brain cortex homogenates. At 1.2 mu M concentration, DHI proved as effective as alpha-tocopherol (alpha-T), one of the most potent endogenous antioxidants, in suppressing azo-induced peroxidation of linoleic acid in phosphate buffer (PH 7.4), containing 0.10 M SDS, whereas CD and DHICA at the same concentration were less active. DHI, CD and DHICA (all in the range 25 mu M-0.5 mM) were also found to inhibit Fe (II)/EDTA-induced oxidation of 0.5 mM arachidonic acid at pH 7.4, as well as MDA formation by iron-promoted degradation of 0.5 mM 15-hydroperoxy-5,8,11, 13-eicosatetraenoic acid (15-HPETE). In both cases the inhibitory effects were much greater than those of ascorbic acid and glutathione. These results point to melanin precursors as a novel class of biological antioxidants which may contribute to defense mechanisms against oxidative injury in human skin.

    Dissecting pain processing in adolescents with Non‐Suicidal Self Injury: Could suicide risk lurk among the electrodes?

    No full text
    BACKGROUND: Although non‐suicidal self‐injury (NSSI) disorder is highly prevalent in adolescents, its relationship with pain system function and suicidality is still controversial. The present study was designed to assess the function of the nociceptive afferent pathways and the endogenous pain modulation in adolescent patients with NSSI and to longitudinally register any suicide attempt, describe its frequency and find a possible association between suicide, neurophysiological measures and psychological measures. METHODS: We enrolled 30 adolescents suffering from NSSI and 20 age‐ and gender‐matched healthy controls. Patients underwent a comprehensive psychological evaluation. Each participant underwent thermal pain thresholds of the quantitative sensory testing, laser‐evoked potential recording to study the ascending nociceptive pathway and the conditioned pain modulation testing to test the endogenous pain modulation. RESULTS: We found that patients with NSSI had a reduced amplitude of the N2 component of laser‐evoked potentials and an abnormal conditioned pain modulation. The amplitude of the N2 was associated with suicidal risk. CONCLUSIONS: The deficit of the endogenous pain modulation likely depends on a saturation due to continuous pain solicitation. The strong association of a reduced amplitude of the N2 component with suicide suggests that it may serve as a possible biomarker in self‐harming adolescents. SIGNIFICANCE: The present study identifies the N2 component of laser‐evoked potentials as a possible neurophysiological biomarker of suicidal risk in patients with non‐suicidal self‐injury, therefore, raising the possibility for a non‐invasive test to identify subjects at higher risk of suicide among self‐harming patients

    Procalcitonin and C-reactive protein to rule out early bacterial coinfection in COVID-19 critically ill patients

    No full text
    Although the prevalence of community-acquired respiratory bacterial coinfection upon hospital admission in patients with coronavirus disease 2019 (COVID-19) has been reported to be < 5%, almost three-quarters of patients received antibiotics. We aim to investigate whether procalcitonin (PCT) or C-reactive protein (CRP) upon admission could be helpful biomarkers to identify bacterial coinfection among patients with COVID-19 pneumonia. We carried out a multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish intensive care units (ICUs). The primary outcome was to explore whether PCT or CRP serum levels upon hospital admission could predict bacterial coinfection among patients with COVID-19 pneumonia. The secondary outcome was the evaluation of their association with mortality. We also conducted subgroups analyses in higher risk profile populations. Between 5 February 2020 and 21 December 2021, 4076 patients were included, 133 (3%) of whom presented bacterial coinfection. PCT and CRP had low area under curve (AUC) scores at the receiver operating characteristic (ROC) curve analysis [0.57 (95% confidence interval (CI) 0.51-0.61) and 0.6 (95% CI, 0.55-0.64), respectively], but high negative predictive values (NPV) [97.5% (95% CI 96.5-98.5) and 98.2% (95% CI 97.5-98.9) for PCT and CRP, respectively]. CRP alone was associated with bacterial coinfection (OR 2, 95% CI 1.25-3.19; p = 0.004). The overall 15, 30 and 90 days mortality had a higher trend in the bacterial coinfection group, but without significant difference. PCT ≄ 0.12 ng/mL was associated with higher 90 days mortality. Our study suggests that measurements of PCT and CRP, alone and at a single time point, are not useful for ruling in or out bacterial coinfection in viral pneumonia by COVID-19

    Clinical characteristics and outcomes of vaccinated patients hospitalised with SARS-CoV-2 breakthrough infection: Multi-IPV, a multicentre study in Northern Italy

    No full text
    Background: Despite the well-known efficacy of anti-COVID-19 vaccines in preventing morbidity and mortality, several vaccinated individuals are diagnosed with SARS-CoV-2 breakthrough infection, which might require hospitalisation. This multicentre, observational, and retrospective study aimed to investigate the clinical characteristics and outcomes of vaccinated vs. non-vaccinated patients, both hospitalised with SARS-CoV-2 infection in 3 major hospitals in Northern Italy. Methods: Data collection was retrospective, and paper and electronic medical records of adult patients with a diagnosed SARS-CoV-2 infection were pseudo-anonymised and analysed. Vaccinated and non-vaccinated individuals were manually paired, using a predetermined matching criterion (similar age, gender, and date of hospitalisation). Demographic, clinical, treatment, and outcome data were compared between groups differing by vaccination status using Pearson’s Chi-square and Mann-Whitney tests. Moreover, multiple logistic regression analyses were performed to assess the impact of vaccination status on ICU admission or intra-hospital mortality. Results: Data from 360 patients were collected. Vaccinated patients presented with a higher prevalence of relevant comorbidities, like kidney replacement therapy or haematological malignancy, despite a milder clinical presentation at the first evaluation. Non-vaccinated patients required intensive care more often than their vaccinated counterparts (8.8% vs. 1.7%, p = 0.002). Contrariwise, no difference in intra-hospital mortality was observed between the two groups (19% vs. 20%, p = 0.853). These results were confirmed by multivariable logistic regressions, which showed that vaccination was significantly associated with decreased risk of ICU admission (aOR=0.172, 95%CI: 0.039–0.542, p = 0.007), but not of intra-hospital mortality (aOR=0.996, 95%CI: 0.582–1.703, p = 0.987). Conclusions: This study provides real-world data on vaccinated patients hospitalised with COVID-19 in Northern Italy. Our results suggest that COVID-19 vaccination has a protective role in individuals with higher risk profiles, especially regarding the need for ICU admission. These findings contribute to our understanding of SARS-CoV-2 infection outcomes among vaccinated individuals and emphasise the importance of vaccination in preventing severe disease, particularly in those countries with lower first-booster uptake rates
    corecore