19 research outputs found

    STXBP1 Syndrome Is Characterized by Inhibition-Dominated Dynamics of Resting-State EEG

    No full text
    STXBP1 syndrome is a rare neurodevelopmental disorder caused by heterozygous variants in the STXBP1 gene and is characterized by psychomotor delay, early-onset developmental delay, and epileptic encephalopathy. Pathogenic STXBP1 variants are thought to alter excitation-inhibition (E/I) balance at the synaptic level, which could impact neuronal network dynamics; however, this has not been investigated yet. Here, we present the first EEG study of patients with STXBP1 syndrome to quantify the impact of the synaptic E/I dysregulation on ongoing brain activity. We used high-frequency-resolution analyses of classical and recently developed methods known to be sensitive to E/I balance. EEG was recorded during eyes-open rest in children with STXBP1 syndrome (n = 14) and age-matched typically developing children (n = 50). Brain-wide abnormalities were observed in each of the four resting-state measures assessed here: (i) slowing of activity and increased low-frequency power in the range 1.75\u20134.63 Hz, (ii) increased long-range temporal correlations in the 11\u201318 Hz range, (iii) a decrease of our recently introduced measure of functional E/I ratio in a similar frequency range (12\u201324 Hz), and (iv) a larger exponent of the 1/f-like aperiodic component of the power spectrum. Overall, these findings indicate that large-scale brain activity in STXBP1 syndrome exhibits inhibition-dominated dynamics, which may be compensatory to counteract local circuitry imbalances expected to shift E/I balance toward excitation, as observed in preclinical models. We argue that quantitative EEG investigations in STXBP1 and other neurodevelopmental disorders are a crucial step to understand large-scale functional consequences of synaptic E/I perturbations

    Pathogenic neurofibromatosis type 1 (NF1) RNA splicing resolved by targeted RNAseq

    Get PDF
    Neurofibromatosis type 1 (NF1) is caused by loss-of-function variants in the NF1 gene. Approximately 10% of these variants affect RNA splicing and are either missed by conventional DNA diagnostics or are misinterpreted by in silico splicing predictions. Therefore, a targeted RNAseq-based approach was designed to detect pathogenic RNA splicing and associated pathogenic DNA variants. For this method RNA was extracted from lymphocytes, followed by targeted RNAseq. Next, an in-house developed tool (QURNAs) was used to calculate the enrichment score (ERS) for each splicing event. This method was thoroughly tested using two different patient cohorts with known pathogenic splice-variants in NF1. In both cohorts all 56 normal reference transcript exon splice junctions, 24 previously described and 45 novel non-reference splicing events were detected. Additionally, all expected pathogenic splice-variants were detected. Eleven patients with NF1 symptoms were subsequently tested, three of which have a known NF1 DNA variant with a putative effect on RNA splicing. This effect could be confirmed for all 3. The other eight patients were previously without any molecular confirmation of their NF1-diagnosis. A deep-intronic pathogenic splice variant could now be identified for two of them (25%). These results suggest that targeted RNAseq can be successfully used to detect pathogenic RNA splicing variants in NF1.Genetics of disease, diagnosis and treatmen

    Pathogenic neurofibromatosis type 1 (NF1) RNA splicing resolved by targeted RNAseq

    No full text
    Neurofibromatosis type 1 (NF1) is caused by loss-of-function variants in the NF1 gene. Approximately 10% of these variants affect RNA splicing and are either missed by conventional DNA diagnostics or are misinterpreted by in silico splicing predictions. Therefore, a targeted RNAseq-based approach was designed to detect pathogenic RNA splicing and associated pathogenic DNA variants. For this method RNA was extracted from lymphocytes, followed by targeted RNAseq. Next, an in-house developed tool (QURNAs) was used to calculate the enrichment score (ERS) for each splicing event. This method was thoroughly tested using two different patient cohorts with known pathogenic splice-variants in NF1. In both cohorts all 56 normal reference transcript exon splice junctions, 24 previously described and 45 novel non-reference splicing events were detected. Additionally, all expected pathogenic splice-variants were detected. Eleven patients with NF1 symptoms were subsequently tested, three of which have a known NF1 DNA variant with a putative effect on RNA splicing. This effect could be confirmed for all 3. The other eight patients were previously without any molecular confirmation of their NF1-diagnosis. A deep-intronic pathogenic splice variant could now be identified for two of them (25%). These results suggest that targeted RNAseq can be successfully used to detect pathogenic RNA splicing variants in NF1

    STXBP1 Syndrome Is Characterized by Inhibition-Dominated Dynamics of Resting-State EEG

    No full text
    STXBP1 syndrome is a rare neurodevelopmental disorder caused by heterozygous variants in the STXBP1 gene and is characterized by psychomotor delay, early-onset developmental delay, and epileptic encephalopathy. Pathogenic STXBP1 variants are thought to alter excitation-inhibition (E/I) balance at the synaptic level, which could impact neuronal network dynamics; however, this has not been investigated yet. Here, we present the first EEG study of patients with STXBP1 syndrome to quantify the impact of the synaptic E/I dysregulation on ongoing brain activity. We used high-frequency-resolution analyses of classical and recently developed methods known to be sensitive to E/I balance. EEG was recorded during eyes-open rest in children with STXBP1 syndrome (n = 14) and age-matched typically developing children (n = 50). Brain-wide abnormalities were observed in each of the four resting-state measures assessed here: (i) slowing of activity and increased low-frequency power in the range 1.75-4.63 Hz, (ii) increased long-range temporal correlations in the 11-18 Hz range, (iii) a decrease of our recently introduced measure of functional E/I ratio in a similar frequency range (12-24 Hz), and (iv) a larger exponent of the 1/f-like aperiodic component of the power spectrum. Overall, these findings indicate that large-scale brain activity in STXBP1 syndrome exhibits inhibition-dominated dynamics, which may be compensatory to counteract local circuitry imbalances expected to shift E/I balance toward excitation, as observed in preclinical models. We argue that quantitative EEG investigations in STXBP1 and other neurodevelopmental disorders are a crucial step to understand large-scale functional consequences of synaptic E/I perturbations

    Pathogenic neurofibromatosis type 1 (NF1) RNA splicing resolved by targeted RNAseq

    No full text
    Neurofibromatosis type 1 (NF1) is caused by loss-of-function variants in the NF1 gene. Approximately 10% of these variants affect RNA splicing and are either missed by conventional DNA diagnostics or are misinterpreted by in silico splicing predictions. Therefore, a targeted RNAseq-based approach was designed to detect pathogenic RNA splicing and associated pathogenic DNA variants. For this method RNA was extracted from lymphocytes, followed by targeted RNAseq. Next, an in-house developed tool (QURNAs) was used to calculate the enrichment score (ERS) for each splicing event. This method was thoroughly tested using two different patient cohorts with known pathogenic splice-variants in NF1. In both cohorts all 56 normal reference transcript exon splice junctions, 24 previously described and 45 novel non-reference splicing events were detected. Additionally, all expected pathogenic splice-variants were detected. Eleven patients with NF1 symptoms were subsequently tested, three of which have a known NF1 DNA variant with a putative effect on RNA splicing. This effect could be confirmed for all 3. The other eight patients were previously without any molecular confirmation of their NF1-diagnosis. A deep-intronic pathogenic splice variant could now be identified for two of them (25%). These results suggest that targeted RNAseq can be successfully used to detect pathogenic RNA splicing variants in NF1

    Pathogenic neurofibromatosis type 1 (NF1) RNA splicing resolved by targeted RNAseq

    No full text
    Neurofibromatosis type 1 (NF1) is caused by loss-of-function variants in the NF1 gene. Approximately 10% of these variants affect RNA splicing and are either missed by conventional DNA diagnostics or are misinterpreted by in silico splicing predictions. Therefore, a targeted RNAseq-based approach was designed to detect pathogenic RNA splicing and associated pathogenic DNA variants. For this method RNA was extracted from lymphocytes, followed by targeted RNAseq. Next, an in-house developed tool (QURNAs) was used to calculate the enrichment score (ERS) for each splicing event. This method was thoroughly tested using two different patient cohorts with known pathogenic splice-variants in NF1. In both cohorts all 56 normal reference transcript exon splice junctions, 24 previously described and 45 novel non-reference splicing events were detected. Additionally, all expected pathogenic splice-variants were detected. Eleven patients with NF1 symptoms were subsequently tested, three of which have a known NF1 DNA variant with a putative effect on RNA splicing. This effect could be confirmed for all 3. The other eight patients were previously without any molecular confirmation of their NF1-diagnosis. A deep-intronic pathogenic splice variant could now be identified for two of them (25%). These results suggest that targeted RNAseq can be successfully used to detect pathogenic RNA splicing variants in NF1

    Pathogenic neurofibromatosis type 1 (NF1) RNA splicing resolved by targeted RNAseq

    No full text
    Neurofibromatosis type 1 (NF1) is caused by loss-of-function variants in the NF1 gene. Approximately 10% of these variants affect RNA splicing and are either missed by conventional DNA diagnostics or are misinterpreted by in silico splicing predictions. Therefore, a targeted RNAseq-based approach was designed to detect pathogenic RNA splicing and associated pathogenic DNA variants. For this method RNA was extracted from lymphocytes, followed by targeted RNAseq. Next, an in-house developed tool (QURNAs) was used to calculate the enrichment score (ERS) for each splicing event. This method was thoroughly tested using two different patient cohorts with known pathogenic splice-variants in NF1. In both cohorts all 56 normal reference transcript exon splice junctions, 24 previously described and 45 novel non-reference splicing events were detected. Additionally, all expected pathogenic splice-variants were detected. Eleven patients with NF1 symptoms were subsequently tested, three of which have a known NF1 DNA variant with a putative effect on RNA splicing. This effect could be confirmed for all 3. The other eight patients were previously without any molecular confirmation of their NF1-diagnosis. A deep-intronic pathogenic splice variant could now be identified for two of them (25%). These results suggest that targeted RNAseq can be successfully used to detect pathogenic RNA splicing variants in NF1

    DNA methylation episignature and comparative epigenomic profiling of HNRNPU-related neurodevelopmental disorder

    Get PDF
    Purpose: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. Methods: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. Results: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. Conclusion: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test

    Episignature Mapping of TRIP12 Provides Functional Insight into Clark-Baraitser Syndrome

    No full text
    Clark-Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12. We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark-Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders.Genetics of disease, diagnosis and treatmen
    corecore