15 research outputs found

    Deciphering the RNA landscape by RNAome sequencing

    Get PDF
    Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods

    Detection of chemically induced ecotoxicological effects in rivers of the Nidda catchment (Hessen, Germany) and development of an ecotoxicological, Water Framework Directive–compliant assessment system

    No full text
    Abstract Background Approximately 90% of German surface waters do not meet the objectives of the European Water Framework Directive (EU-WFD). This is primarily due to deficits in water body structure and biological quality components, which in turn are negatively affected by chemical pollution. In this context, hydromorphological restoration measures have often been conducted to improve habitat and species diversity and, therefore, the ecological status of water bodies. However, habitat improvement is not necessarily accompanied by biota enhancement and thus by the improvement of the ecological status of rivers. To prioritize water management measures, decision criteria for the water management practice are necessary, which enable the prognosis, whether chemical pollution and its resulting effects or other factors, such as structural deficits of the water bodies, are the main cause for the failure to meet the objective of a good ecological status. Results To address this need, we applied the freshwater mudsnail Potamopyrgus antipodarum and the amphipod Gammarus fossarum in active monitoring campaigns and in laboratory experiments with combined water/sediment samples and analyzed water and sediment samples with in vitro assays quarterly over the course of 1 year to provide evidence and guideline to assess if chemical contamination is a relevant stress factor for the aquatic biodiversity in rivers of the Nidda catchment (Hessen, Germany). On the basis of these results, an ecotoxicological, WFD–compliant assessment system was developed which, in comparison with the ecological status classes of the EU-WFD, permits the identification of the probable causes for the failure to meet the objectives of the EU-WFD. From these findings, recommendations for action were derived for the implementation of priority measures in water management practice. For the rivers Nidda, Usa, and Horloff, we identified a need for action to improve water and sediment quality at all investigated sampling sites except for the reference sites in the headwaters. The ecotoxicological assessment system also highlighted that hydromorphological restoration measures on their own will not lead to a good ecological status of rivers, as long as water and sediment quality are deficient. Conclusion Hydromorphological restoration measures should be performed in conjunction with measures to reduce chemical contamination to achieve a good ecological status of the rivers Nidda, Usa, and Horloff

    Divergent Molecular and Cellular Responses to Low and High-Dose Ionizing Radiation

    No full text
    Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).Cancer Signaling networks and Molecular Therapeutic
    corecore