4 research outputs found

    The Inhibitive effect of ethanolamine on corrosion behavior of aluminium in NaCl solution saturated with CO2

    Get PDF
    In this study, the inhibitive effect of ethanolamine on corrosion behavior of aluminium was investigated in 3 wt. % NaCl solution, saturated with CO2. All the experiments were carried out at 20 °C. Ethanolamine was added at different concentrations between 1 mM and 8 mM. In order to determine the corrosion inhibition efficiency of investigated inhibitor and the optimal concentration of inhibitor that provides the lowest corrosion of aluminium, the open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), linear sweep voltametry (LSV) measurements, weight loss measurements as well as scanning electron microscopy technique (SEM) were performed. The electrochemical study and weight loss measurements indicated that the minimum corrosion rate and maximum inhibition efficiency was detected for concentration of 5 mM of ethanolamine, as well as the ethanolamine did not change the mechanism of aluminium dissolution. The adsorption of ethanolamine was found to obey Frumkin adsorption isotherm at concentrations up to 5 mM, but further increase in concentration was found to deviate from Frumkin adsorption isotherm. The calculated value for interaction parameter a indicates attractive lateral interactions in the adsorbed inhibitor layer. The obtained value of standard free energy of adsorption, ∆Gads θ , confirms that the adsorption process is favorable, spontaneous physisorption process

    The Inhibitive effect of ethanolamine on corrosion behavior of aluminium in NaCl solution saturated with CO2

    Get PDF
    In this study, the inhibitive effect of ethanolamine on corrosion behavior of aluminium was investigated in 3 wt. % NaCl solution, saturated with CO2. All the experiments were carried out at 20°C. Ethanolamine was added at different concentrations between 1 mM and 8 mM. In order to determine the corrosion inhibition efficiency of investigated inhibitor and the optimal concentration of inhibitor that provides the lowest corrosion of aluminium, the open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), linear sweep voltametry (LSV) measurements, weight loss measurements as well as scanning electron microscopy technique (SEM) were performed. The electrochemical study and weight loss measurements indicated that the minimum corrosion rate and maximum inhibition efficiency was detected for concentration of 5 mM of ethanolamine, as well as the ethanolamine did not change the mechanism of aluminium dissolution. The adsorption of ethanolamine was found to obey Frumkin adsorption isotherm at concentrations up to 5 mM, but further increase in concentration was found to deviate from Frumkin adsorption isotherm. The calculated value for interaction parameter a indicates attractive lateral interactions in the adsorbed inhibitor layer. The obtained value of standard free energy of adsorption, ∆Gads θ , confirms that the adsorption process is favorable, spontaneous physisorption process

    The mixture of dicyclohexilamine and oleylamine as corrosion inhibitor for mild steel in NaCl solution saturated with CO2 under both continual immersion and top of the line corrosion

    No full text
    This paper presents a comprehensive method to evaluate the mixture of dicyclohexilamine and oleylamine (DCHA+OA) as corrosion inhibitor for mild steel in CO2 environment in liquid and vapor phase. Corrosion inhibitor volatile properties were investigated in order to determine if DCHA+OA can be used to control the severity of the top of the line (TLC) corrosion attack. Corrosion measurements were performed using electrochemical impedance spectroscopy, linear polarization resistance, potentiodynamic sweep measurements, as well as the electrical resistance measurements and weight loss measurements, in order to determine the inhibitive performances of dicyclohexilamine and oleylamine. In order to define surface morphological characteristics scanning electron microscopy technique was applied. The electrochemical study and weight loss measurements indicated that DCHA+OA significantly decreased the corrosion rate in liquid phase when 50 ppm of DCHA+OA was added. Scanning electron microphotographs indicated protective inhibitor film has formed on the steel surface and revealed that good protection was achieved, along with the decrease in the corrosion rate determined by weight loss and electrochemical techniques. Using electrical resistance measurements in vapor phase it was shown that concentration of 1000 ppm DCHA+OA significantly decreased the corrosion rate at the top of the line, only when it was carried there within its own foam and not due its volatility
    corecore