42 research outputs found
Forensic Chemistry and Toxicology
The current chapter deals with forensic chemistry & toxicology which is completely based on the introduction and classification of poisons and their impacts on the body and the factors affecting them and detection and examination of poisons. The purpose of this chapter is to discuss their mode of action and function once they reached in the human body. The impacts of poisons are severe and even cause death if not treated properly
Heavy Metal Contamination
In the era of industrialization, pollution has totally deteriorated the quality and diversity of life. Heavy metal contaminations are the major causes of environment deteriorations. The basic reasons are natural as well as anthropogenic. Chief sources of heavy metal contamination are air pollution, river sediments, sewage sludge, town waste composts, agricultural chemicals like fertilizers and pesticides, and industrial waste like factories releasing chemicals, anthropogenic activities, etc. Agricultural soils in many parts of the world are generally contaminated by heavy metal toxicity such as Cd, Cu, Zn, Ni, Co, Pb, Hg, As, etc. These are due to the long-term use of phosphate fertilizers, sewage sludge, dust from smelters, industrial waste, etc. Heavy metals in soils are detected with some specific instruments like atomic absorption spectroscopy, inductively coupled plasma, inductively coupled plasma-mass spectroscopy, and X-ray fluorescence and spectroscopy. Among all these instruments, atomic absorption spectroscopy (AAS) is the best because it gives the precise quantitative determination. AAS is a method applied for measuring the quantity of the trace elements present in the soil or any other samples
Forensic Anthropology
Physical anthropology has been making progress in the field of forensic science. Forensic anthropology is the study of identifying and establishing identity of the skeletal remains present at the crime scene. The purpose of the chapter is to throw a light on the field of forensic anthropology as it seeks data like age, sex, ethnic groups, and other characteristic features after the examination of the skeletal remains. Forensic anthropology helps in determining the manner and cause of death, and if the body is still in the decompositions stage, time since death can also be estimated. Advancement in forensic anthropology will not only help to solve the case but it will also increase the opportunity to work in this area. In this chapter, there is an explanation of some of the methods used in forensic anthropology for the analysis of identification and other purposes
Folding regulates autoprocessing of HIV-1 protease precursor
Autoprocessing of HIV-1 protease (PR) precursors is a crucial step in the generation of the mature protease. Very little is known regarding the molecular mechanism and regulation of this important process in the viral life cycle. In this context we report here the first and complete residue level investigations on the structural and folding characteristics of the 17-kDa precursor TFR-PR-Cnn (161 residues) of HIV-1 protease. The precursor shows autoprocessing activity indicating that the solution has a certain population of the folded active dimer. Removal of the 5-residue extension, Cnn at the C-terminal of PR enhanced the activity to some extent. However, NMR structural characterization of the precursor containing a mutation, D25N in the PR at pH 5.2 and 32 °C under different conditions of partial and complete denaturation by urea, indicate that the precursor has a high tendency to be unfolded. The major population in the ensemble displays some weak folding propensities in both the TFR and the PR regions, and many of these in the PR region are the non-native type. As both D25N mutant and wild-type PR are known to fold efficiently to the same native dimeric form, we infer that TFR cleavage enables removal of the non-native type of preferences in the PR domain to cause constructive folding of the protein. These results indicate that intrinsic structural and folding preferences in the precursor would have important regulatory roles in the autoprocessing reaction and generation of the mature enzyme
Structural characterization of the large soluble oligomers of the GTPase effector domain of dynamin
Dynamin, a protein playing crucial roles in endocytosis, oligomerizes to form spirals around the necks of incipient vesicles and helps their scission from membranes. This oligomerization is known to be mediated by the GTPase effector domain (GED). Here we have characterized the structural features of recombinant GED using a variety of biophysical methods. Gel filtration and dynamic light scattering experiments indicate that in solution, the GED has an intrinsic tendency to oligomerize. It forms large soluble oligomers (molecular mass > 600 kDa). Interestingly, they exist in equilibrium with the monomer, the equilibrium being largely in favour of the oligomers. This equilibrium, observed for the first time for GED, may have regulatory implications for dynamin function. From the circular dichroism measurements the multimers are seen to have a high helical content. From multidimensional NMR analysis we have determined that about 30 residues in the monomeric units constituting the oligomers are flexible, and these include a 17 residue stretch near the N-terminal. This contains two short segments with helical propensities in an otherwise dynamic structure. Negatively charged SDS micelles cause dissociation of the oligomers into monomers, and interestingly, the helical characteristics of the oligomer are completely retained in the individual monomers. The segments along the chain that are likely to form helices have been predicted from five different algorithms, all of which identify two long stretches. Surface electrostatic potential calculation for these helices reveals that there is a distribution of neutral, positive and negative potentials, suggesting that both electrostatic and hydrophobic interactions could be playing important roles in the oligomer core formation. A single point mutation, I697A, in one of the helices inhibited oligomerization quite substantially, indicating firstly, a special role of this residue, and secondly, a decisive, though localized, contribution of hydrophobic interaction in the association process
Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that cause millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients’ disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient’s physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.All the authors are highly grateful and acknowledge to the authority of the respective departments and institutions for their support in carrying out this research. The authors also express their sincere gratitude to the unknown referee for critically reviewing the manuscript and suggesting useful changes.
This research was funded by "Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) del Gobierno de Canarias” (No. ProID2020010134), and o´Caja Canarias (Project No. 2019SP43).Peer reviewe
Divided loyalties: citizenship, regional identity and nationalism in Eastern India (1866- 1931)
University of Minnesota Ph.D. dissertation. December 2008. Major: History. Advisor: Ajay Skaria. 1 computer file (PDF); viii, 248 pages. Ill.(map)some col.This dissertation poses the following question--What does the co-existence of profound linguistic difference and unitary nationalism reveal about the nature of the Indian nation and the relationship between the region and the nation in India. To this end, I focus on the period when a tactical resolution between the demands of the region and the nation occurred in India. My contention is that at the root of this resolution is the need (both at the regional and national level) to imagine a new citizen of emergent India.
Through detailed studies of cultural and intellectual engagement of regional political, literary and historical organizations in early twentieth century Orissa, this dissertation traces the resolution of regional and national interests. I argue that in the period between 1900 and 1920, the emergence of the idea of a universal and politicized Indian citizen occasioned this resolution of the tension between the region and the nation. As the meanings of politics, statehood, rule and subject-hood changed due the colonial state's efforts to introduce franchise in India, both the Indian National Congress and the major regional political organization in Orissa, the Utkal Sammillani were forced to elaborate a clear relationship between Orissa as a region and the broader Indian nation in order to define the universal Indian citizen
Knowledge and passive adaptation to climate change: An example from Indian farmers
This study is an attempt to use group information collected on climate change from farmers in eastern Uttar Pradesh, India to address a key question related to climate change policy: How to encourage farmers to adapt to climate change? First, we investigate farmers’ perception of and adaptation to climate change using content analysis and group information. The findings are then compared with climatic and agriculture information collected through secondary sources. Results suggest that though farmers are aware of long-term changes in climatic factors (temperature and rainfall, for example), they are unable to identify these changes as climate change. Farmers are also aware of risks generated by climate variability and extreme climatic events. However, farmers are not taking concrete steps in dealing with perceived climatic changes, although we find out that farmers are changing their agricultural and farming practices. These included changing sowing and harvesting timing, cultivation of crops of short duration varieties, inter-cropping, changing cropping pattern, investment in irrigation, and agroforestry. Note that these changes may be considered as passive response or adaptation strategies to climate change. Perhaps farmers are implicitly taking initiatives to adapt climate change. Finally, the paper suggests some policy interventions to scale up adaptation to climate change in Indian agriculture