32 research outputs found

    Anomaly Detection Algorithms and Techniques for Network Intrusion Detection Systems

    Get PDF
    In recent years, many deep learning-based models have been proposed for anomaly detection. This thesis presents a comparison of selected deep autoencoding models and classical anomaly detection methods on three modern network intrusion detection datasets. We experiment with different configurations and architectures of the selected models, as well as aggregation techniques for input preprocessing and output postprocessing. We propose a methodology for creating benchmark datasets for the evaluation of the methods in different settings. We provide a statistical comparison of the performance of the selected techniques. We conclude that the deep autoencoding models, in particular AE and VAE, systematically outperform the classic methods. Furthermore, we show that aggregating input network flow data improves the overall performance. In general, the tested techniques are promising regarding their application in network intrusion detection systems. However, secondary techniques must be employed to reduce the high numbers of generated false alarms

    Molecular Dynamics Study of Self-Diffusion in Zr

    Full text link
    We employed a recently developed semi-empirical Zr potential to determine the diffusivities in the hcp and bcc Zr via molecular dynamics simulation. The point defect concentration was determined directly from MD simulation rather than from theoretical methods using T=0 calculations. We found that the diffusion proceeds via the interstitial mechanism in the hcp Zr and both the vacancy and interstitial mechanisms give contribution in diffusivity in the bcc Zr. The agreement with the experimental data is excellent for the hcp Zr and for the bcc Zr it is rather good at high temperatures but there is a considerable disagreement at low temperatures

    Numerical and experimental study of the weld joints formation in welding foam materials

    Get PDF
    A numerical analysis of fusion welding of steel- and aluminum-based foam materials is carried out. The schemes of the structured and stochastic pore distribution are considered. The research results were used to conduct the experiments which confirmed the reliability of the numerical calculations

    Endless Bridge

    Get PDF
    1 volume, 80 pages. A visual retelling of creation, Mikhail Mishin\u27s Endless Bridge utilizes juxtapositions and stark comparisons in a narrative that spans from birth to death and back again. iPhone photos, newspaper clippings and other found materials are the vocabulary used in this book in which light is separated from dark, and order emerges from chaos, only to revert back into nothingness. Images in this book have the quality of archaeological artifacts, where the transient qualities of an inflated tarp, a light reflection on the pavement or footprint in the concrete are highlighted. We know what comes after, we see what came before. Yet these fleeting moments hold great weight in the larger context of this cycle. --Publisher\u27s website, viewed April 25, 2019. Limited edition of 100 copies. Black on black illustration on paper cover. Perfect binding.https://digitalcommons.risd.edu/specialcollections_artistsbooks/1155/thumbnail.jp

    Deep Laser Cooling of Thulium Atoms to Sub-ΞΌ\muK Temperatures in Magneto-Optical Trap

    Full text link
    Deep laser cooling of atoms, ions, and molecules facilitates the study of fundamental physics as well as applied research. In this work, we report on the narrow-line laser cooling of thulium atoms at the wavelength of 506.2 nm506.2\,\textrm{nm} with the natural linewidth of 7.8 kHz7.8\,\textrm{kHz}, which widens the limits of atomic cloud parameters control. Temperatures of about 400 nK400\,\textrm{nK}, phase-space density of up to 3.5Γ—10βˆ’43.5\times10^{-4} and 2Γ—1062\times10^6 number of trapped atoms were achieved. We have also demonstrated formation of double cloud structure in an optical lattice by adjusting parameters of the 506.2 nm506.2\,\textrm{nm} magneto-optical trap. These results can be used to improve experiments with BEC, atomic interferometers, and optical clocks.Comment: 12 pages, 6 figure

    Structural insights into thrombolytic activity of destabilase from medicinal leech

    Get PDF
    Destabilase from the medical leech Hirudo medicinalis belongs to the family of i-type lysozymes. It has two different enzymatic activities: microbial cell walls destruction (muramidase activity), and dissolution of the stabilized fibrin (isopeptidase activity). Both activities are known to be inhibited by sodium chloride at near physiological concentrations, but the structural basis remains unknown. Here we present two crystal structures of destabilase, including a 1.1Β Γ…-resolution structure in complex with sodium ion. Our structures reveal the location of sodium ion between Glu34/Asp46 residues, which were previously recognized as a glycosidase active site. While sodium coordination with these amino acids may explain inhibition of the muramidase activity, its influence on previously suggested Ser49/Lys58 isopeptidase activity dyad is unclear. We revise the Ser49/Lys58 hypothesis and compare sequences of i-type lysozymes with confirmed destabilase activity. We suggest that the general base for the isopeptidase activity is His112 rather than Lys58. pKa calculations of these amino acids, assessed through the 1Β ΞΌs molecular dynamics simulation, confirm the hypothesis. Our findings highlight the ambiguity of destabilase catalytic residues identification and build foundations for further research of structure–activity relationship of isopeptidase activity as well as structure-based protein design for potential anticoagulant drug development.</p

    Biosynthesis lipase from the fungus

    No full text
    The article provides a method of isolating a lipase producer and identification methods by classical methods in microbiology of an isolated micromycete producing lipase. The species affiliation of Penicillium hordei has been determined. The temperature of micromycete cultivation was studied, as well as the dynamics of Penicillium hordei lipase biosynthesis. Screening plans were also carried out (Plackett-Berman Plan), then optimization according to the steep climb plan and an experiment based on the plan of a full-factor experiment (three-level CFE) was also conducted to determine the optimal concentrations that are significant for lipase biosynthesis of components. A mathematical model is constructed that describes the relationship between the influence of two significant factors on the volumetric activity of P. Hordei culture fluid. The most optimal composition for the culture fluid for lipase biosynthesis, Penicillium hordei micromycete, was compiled

    Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΎΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΈΡ… схСм Π±Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΈΡ… Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Ρ–Π² Ρ– Ρ†ΠΈΠ»Ρ–Π½Π΄Ρ€ΠΈΡ‡Π½ΠΈΡ… посудин тиску Π· вуглСпластиків

    No full text
    In the framework of the momentless theory of cylindrical thin shells, the elastic deformation of multilayer pipes and pressure vessels is investigated. It is assumed that the pipes and pressure vessels are made by two-way spiral winding of carbon fiber reinforced plastic tape on a metal mandrel.The analysis of the dependences of elastic deformations on the reinforcement angles is performed. The relations for axial and circumferential deformations of the wall, depending on the structure of the layer package, reinforcement angles under static loading are obtained. The separate and combined effect of internal pressure and temperature is considered. For the separate effect of loads, the graphs of deformations against the winding angle are plotted.Composite pipes made of KMU-4L carbon fiber reinforced plastic, as well as composite metal-composite pipes, are investigated. The results obtained for thermal loads are in good agreement with the data of the known experiment and solution. Depending on the load parameters, composite and metal-composite structures with dimensionally stable properties are determined.It is shown that dimensionally stable structures can be used to solve the problem of compensation of elastic deformations of pipelines. For this purpose, using the ASCP software package, the variant analysis of model structures is performed. By the comparative analysis of the three versions of the structure, layer package structures and reinforcement schemes, ensuring a significant reduction of loads on the supporting elements are obtained. On the example of a pipeline with a flowing fluid, it is shown that the use of dimensionally stable multilayer pipes makes it possible to eliminate bending deformations and significantly reduce the level of working forces and stresses.Dimensionally stable composite multilayer pipes open up new approaches to the design of pipelines and pressure vessels. It is possible to create structures with predetermined (not necessarily zero) displacement fields, consistent with the fields of the initial technological displacements, as well as with the displacements of conjugate elastic elements and equipment when the operating mode changes. The scope of such structures is not limited to "hot" pipes. The results can be used in cryogenic engineeringΠ’ Ρ€Π°ΠΌΠΊΠ°Ρ… Π±Π΅Π·ΠΌΠΎΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ цилиндричСских Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΎΠ±ΠΎΠ»ΠΎΡ‡Π΅ΠΊ исслСдовано ΡƒΠΏΡ€ΡƒΠ³ΠΎΠ΅ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ многослойных Ρ‚Ρ€ΡƒΠ± ΠΈ сосудов давлСния. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€ΡƒΠ±Ρ‹ ΠΈ сосуды давлСния Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ пСрСкрСстной ΡΠΏΠΈΡ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π°ΠΌΠΎΡ‚ΠΊΠΎΠΉ Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π»Π΅Π½Ρ‚Ρ‹ ΠΈΠ· углСпластика Π½Π° ΠΌΠ΅Ρ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΠΏΡ€Π°Π²ΠΊΡƒ.Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· зависимостСй ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ ΠΎΡ‚ ΡƒΠ³Π»ΠΎΠ² армирования. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ для осСвых ΠΈ ΠΎΠΊΡ€ΡƒΠΆΠ½Ρ‹Ρ… Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ стСнки Π² зависимости ΠΎΡ‚ структуры ΠΏΠ°ΠΊΠ΅Ρ‚Π° слоСв, ΡƒΠ³Π»ΠΎΠ² армирования ΠΏΡ€ΠΈ статичСском Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ. РассмотрСно обособлСнноС ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ дСйствиС Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ давлСния ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Для обособлСнного дСйствия Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ построСны Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимостСй Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ ΠΎΡ‚ ΡƒΠ³Π»Π° Π½Π°ΠΌΠΎΡ‚ΠΊΠΈ.Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Π΅ Ρ‚Ρ€ΡƒΠ±Ρ‹, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· углСпластика[s1]Β  KМУ-4Π›, Π° Ρ‚Π°ΠΊΠΆΠ΅ составныС ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎ-ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Π΅ Ρ‚Ρ€ΡƒΠ±Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ для Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ, Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‚ΡΡ с Π΄Π°Π½Π½Ρ‹ΠΌΠΈ извСстного экспСримСнта ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Π’ зависимости ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Π΅ ΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎ-ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Π΅ структуры с Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ свойствами.Показано, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ структуры ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ компСнсации ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ². Π‘ этой Ρ†Π΅Π»ΡŒΡŽ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ комплСкса ASCP Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· модСльной конструкций. ΠŸΡƒΡ‚Π΅ΠΌ ΡΠΎΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Ρ‚Ρ€Π΅Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² конструкции ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ структуры ΠΏΠ°ΠΊΠ΅Ρ‚ΠΎΠ² слоСв ΠΈ схСмы армирования, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ сниТСниС Π½Π°Π³Ρ€ΡƒΠ·ΠΎΠΊ Π½Π° ΠΎΠΏΠΎΡ€Π½Ρ‹Π΅ элСмСнты. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° с ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰Π΅ΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… многослойных Ρ‚Ρ€ΡƒΠ± позволяСт ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈΠ·Π³ΠΈΠ±Π° ΠΈ Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ ΠΏΠΎΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… усилий ΠΈ напряТСний.Π Π°Π·ΠΌΠ΅Ρ€ΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ многослойныС Ρ‚Ρ€ΡƒΠ±Ρ‹ ΠΈΠ· ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‚ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² ΠΈ сосудов ΠΏΠΎΠ΄ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ. ΠŸΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ возмоТности создания конструкций с Π½Π°ΠΏΠ΅Ρ€Π΅Π΄ Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ (Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌΠΈ) полями ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ, согласованными с полями Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… тСхнологичСских ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ с пСрСмСщСниями сопряТСнных ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… элСмСнтов ΠΈ оборудования ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Ρ‹. ΠžΠ±Π»Π°ΡΡ‚ΡŒ примСнСния ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… конструкций Π½Π΅ ограничиваСтся "горячими" Ρ‚Ρ€ΡƒΠ±Π°ΠΌΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΊΡ€ΠΈΠΎΠ³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅Β Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Π±Π΅Π·ΠΌΠΎΠΌΠ΅Π½Ρ‚Π½ΠΎΡ— Ρ‚Π΅ΠΎΡ€Ρ–Ρ— Ρ†ΠΈΠ»Ρ–Π½Π΄Ρ€ΠΈΡ‡Π½ΠΈΡ… Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΎΠ±ΠΎΠ»ΠΎΠ½ΠΎΠΊ дослідТСно ΠΏΡ€ΡƒΠΆΠ½Π΅ дСформування Π±Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΈΡ… Ρ‚Ρ€ΡƒΠ± Ρ– посудин тиску. ΠŸΠ΅Ρ€Π΅Π΄Π±Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ, Ρ‰ΠΎ Ρ‚Ρ€ΡƒΠ±ΠΈ Ρ– посудини тиску Π²ΠΈΠΊΠΎΠ½Π°Π½Ρ– пСрСхрСсної ΡΠΏΡ–Ρ€Π°Π»ΡŒΠ½ΠΎΡ— намотуванням Π°Ρ€ΠΌΠΎΠ²Π°Π½ΠΎΡ— стрічки Π· вуглСпластика Π½Π° ΠΌΠ΅Ρ‚Π°Π»Π΅Π²Ρƒ оправлСння.Π’ΠΈΠΊΠΎΠ½Π°Π½ΠΎ Π°Π½Π°Π»Ρ–Π· залСТностСй ΠΏΡ€ΡƒΠΆΠ½ΠΈΡ… Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΠΉ Π²Ρ–Π΄ ΠΊΡƒΡ‚Ρ–Π² армування. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ ΡΠΏΡ–Π²Π²Ρ–Π΄Π½ΠΎΡˆΠ΅Π½Π½Ρ для ΠΎΡΡŒΠΎΠ²ΠΈΡ… Ρ– ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΈΡ… Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΠΉ стінки Π² залСТності Π²Ρ–Π΄ структури ΠΏΠ°ΠΊΠ΅Ρ‚Π° ΡˆΠ°Ρ€Ρ–Π², ΠΊΡƒΡ‚Ρ–Π² армування ΠΏΡ€ΠΈ статичному Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ–. Розглянуто Π²Ρ–Π΄ΠΎΠΊΡ€Π΅ΠΌΠ»Π΅Π½Π° Ρ– ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½Π° дія Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½ΡŒΠΎΠ³ΠΎ тиску Ρ– Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ. Для Π²Ρ–Π΄ΠΎΠΊΡ€Π΅ΠΌΠ»Π΅Π½ΠΎΡ— Π΄Ρ–Ρ— Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½ΡŒ ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²Π°Π½Ρ– Π³Ρ€Π°Ρ„Ρ–ΠΊΠΈ залСТностСй Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΠΉ Π²Ρ–Π΄ ΠΊΡƒΡ‚Π° намотування.ДослідТСно ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ– Ρ‚Ρ€ΡƒΠ±ΠΈ, Π²ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρ– Π· вуглСпластика KМУ-4Π›, Π° Ρ‚Π°ΠΊΠΎΠΆ складові ΠΌΠ΅Ρ‚Π°Π»ΠΎ-ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ– Ρ‚Ρ€ΡƒΠ±ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– для Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΈΡ… Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½ΡŒ, Π΄ΠΎΠ±Ρ€Π΅ ΡƒΠ·Π³ΠΎΠ΄ΠΆΡƒΡŽΡ‚ΡŒΡΡ Π· Π΄Π°Π½ΠΈΠΌΠΈ Π²Ρ–Π΄ΠΎΠΌΠΎΠ³ΠΎ СкспСримСнту Ρ– Ρ€Ρ–ΡˆΠ΅Π½Π½Ρ. Π—Π°Π»Π΅ΠΆΠ½ΠΎ Π²Ρ–Π΄ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½ΡŒ Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Ρ– ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ– Ρ‚Π° ΠΌΠ΅Ρ‚Π°Π»ΠΎ-ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ– структури Π· Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΎΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΈΠΌΠΈ властивостями.Показано, Ρ‰ΠΎ Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΎΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ– структури ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані для Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ компСнсації ΠΏΡ€ΡƒΠΆΠ½ΠΈΡ… Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΠΉ Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Ρ–Π². Π— Ρ†Ρ–Ρ”ΡŽ ΠΌΠ΅Ρ‚ΠΎΡŽ Π·Π° допомогою ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠ½ΠΎΠ³ΠΎ комплСксу ASCP Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΈΠΉ Π²Π°Ρ€Ρ–Π°Π½Ρ‚Π½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΎΡ— конструкції. Шляхом ΠΏΠΎΡ€Ρ–Π²Π½ΡΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ‚Ρ€ΡŒΠΎΡ… Π²Π°Ρ€Ρ–Π°Π½Ρ‚Ρ–Π² конструкції ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– структури ΠΏΠ°ΠΊΠ΅Ρ‚Ρ–Π² ΡˆΠ°Ρ€Ρ–Π² Ρ– схСми армування, Ρ‰ΠΎΠ± Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΠΈΡ‚ΠΈ Π·Π½Π°Ρ‡Π½Π΅ зниТСння Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½ΡŒ Π½Π° ΠΎΠΏΠΎΡ€Π½Ρ– Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ. На ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Ρ– Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Ρƒ Π· ΠΏΡ€ΠΎΡ‚Ρ–ΠΊΠ°ΡŽΡ‡ΠΎΡŽ Ρ€Ρ–Π΄ΠΈΠ½ΠΎΡŽ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ застосування Ρ€ΠΎΠ·ΠΌΡ–Ρ€ΠΎΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΈΡ… Π±Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΈΡ… Ρ‚Ρ€ΡƒΠ± дозволяє Π²ΠΈΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΠΈ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ— Π²ΠΈΠ³ΠΈΠ½Ρƒ Ρ– ΠΏΠΎΠΌΡ–Ρ‚Π½ΠΎ Π·Π½ΠΈΠ·ΠΈΡ‚ΠΈ Ρ€Ρ–Π²Π΅Π½ΡŒ Ρ€ΠΎΠ±ΠΎΡ‡ΠΈΡ… Π·ΡƒΡΠΈΠ»ΡŒ Ρ– Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ.Π ΠΎΠ·ΠΌΡ–Ρ€ΠΎΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ– Π±Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²Ρ– Ρ‚Ρ€ΡƒΠ±ΠΈ Π· ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² Π²Ρ–Π΄ΠΊΡ€ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½ΠΎΠ²Ρ– ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ Π΄ΠΎ проСктування Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Ρ–Π² Ρ– посудин ΠΏΡ–Π΄ тиском. Π—'ΡΠ²Π»ΡΡŽΡ‚ΡŒΡΡ моТливості створСння конструкцій Π· Π½Π°ΠΏΠ΅Ρ€Π΅Π΄ Π·Π°Π΄Π°Π½ΠΈΠΌΠΈ (Π½Π΅ ΠΎΠ±ΠΎΠ²'язково Π½ΡƒΠ»ΡŒΠΎΠ²ΠΈΠΌΠΈ) полями ΠΏΠ΅Ρ€Π΅ΠΌΡ–Ρ‰Π΅Π½ΡŒ, ΡƒΠ·Π³ΠΎΠ΄ΠΆΠ΅Π½ΠΈΠΌΠΈ Π· полями ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΡ–Ρ‰Π΅Π½ΡŒ, Π° Ρ‚Π°ΠΊΠΎΠΆ Π· пСрСміщСннями сполучСних ΠΏΡ€ΡƒΠΆΠ½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρ– устаткування ΠΏΡ€ΠΈ Π·ΠΌΡ–Π½Ρ– Ρ€Π΅ΠΆΠΈΠΌΡƒ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ. ΠžΠ±Π»Π°ΡΡ‚ΡŒ застосування ΠΏΠΎΠ΄Ρ–Π±Π½ΠΈΡ… конструкцій Π½Π΅ ΠΎΠ±ΠΌΠ΅ΠΆΡƒΡ”Ρ‚ΡŒΡΡ «гарячими» Ρ‚Ρ€ΡƒΠ±Π°ΠΌΠΈ. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π·Π½Π°ΠΉΡ‚ΠΈ застосування Π² ΠΊΡ€Ρ–ΠΎΠ³Π΅Π½Π½Ρ–ΠΉ Ρ‚Π΅Ρ…Π½Ρ–Ρ†

    Add and Go: FRET Acceptor for Live-Cell Measurements Modulated by Externally Provided Ligand

    No full text
    A substantial number of genetically encoded fluorescent sensors rely on the changes in FRET efficiency between fluorescent cores, measured in ratiometric mode, with acceptor photobleaching or by changes in fluorescence lifetime. We report on a modulated FRET acceptor allowing for simplified one-channel FRET measurement based on a previously reported fluorogen-activating protein, DiB1. Upon the addition of the cell-permeable chromophore, the fluorescence of the donor-fluorescent protein mNeonGreen decreases, allowing for a simplified one-channel FRET measurement. The reported chemically modulated FRET acceptor is compatible with live-cell experiments and allows for prolonged time-lapse experiments with dynamic energy transfer evaluation
    corecore