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Abstract
In recent years, many deep learning-based models have been proposed for anomaly
detection. This thesis presents a comparison of selected deep autoencoding models
and classical anomaly detection methods on three modern network intrusion detec-
tion datasets. We experiment with different configurations and architectures of the
selected models, as well as aggregation techniques for input preprocessing and output
postprocessing. We propose a methodology for creating benchmark datasets for the
evaluation of the methods in different settings. We provide a statistical comparison of
the performance of the selected techniques. We conclude that the deep autoencoding
models, in particular AE and VAE, systematically outperform the classic methods.
Furthermore, we show that aggregating input network flow data improves the overall
performance. In general, the tested techniques are promising regarding their applica-
tion in network intrusion detection systems. However, secondary techniques must be
employed to reduce the high numbers of generated false alarms.
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1 Introduction

1.1 Motivation and Context
Telecommunication technologies are evolving rapidly, making the world more con-
nected each year. New standards and technologies, such as 5G - the fifth-generation
standard for cellular networks - and Internet-of-Things (IoT) devices, are getting
widely adopted in modern industries, including automotive transport applications,
smart agricultural farming, and public safety services [1]. The increasing demand
for connectivity necessitates raising the standards for security. With more at stake,
network security solutions of tomorrow will have to become more automated, scalable,
and reliable [2].

There exist many different approaches to network security; for instance, firewalls,
email security, and anti-malware software are some of the standard methods for
protecting personal computers. In this work, we are interested in the approach called
network intrusion detection. The purpose of a network intrusion detection system
(NIDS) is to monitor the network’s activity and detect in real time various harmful
events, such as misconfigurations of network devices or cyberattacks.

A popular approach, also adopted in this work, is to apply anomaly detection
techniques to network intrusion detection [3, 4]. An anomaly-based network intrusion
detection system (ANIDS) detects malicious network activities by searching for
abnormal patterns in network traffic. Figure 1 illustrates the typical flow of an
ANIDS. Such systems have many appealing properties, such as detecting novel
zero-day attacks. However, certain aspects make a successful deployment of an
ANIDS in the real-world environment difficult. According to Sommer et al. [5], the
challenges include “a high cost of errors, lack of labeled data, high complexity and
variability in input data, and fundamental difficulties for evaluating the system.” To
overcome these challenges, we need to understand better both the system under
protection, as well as the capabilities and limitations of the detection process.

Figure 1: Typical flow of an anomaly-based network intrusion detection system
(ANIDS)

Like in any machine learning (ML) application, data is an essential part of the
problem. A network intrusion dataset, containing traffic data collected from some
network (typically with traces of executed attacks), is necessary for the development
and evaluation of anomaly-based network intrusion detection techniques. Due to the
complex nature of computer networks, each network intrusion dataset has its own
specific characteristics and idiosyncrasies. For example, one dataset may contain
traffic from a university network, and another from an industrial IoT network. The
statistical nature of the traffic is very different in both cases, as well as the relevant
cyberthreats. For this reason, researchers commonly agree that it is crucial to use
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several datasets to make any general conclusions in this domain [5, 6]. Fortunately,
in the few recent years, a number of representative network intrusion datasets have
been created and made publicly available [7, 8, 9, 10]. The availability of modern
network intrusion datasets opens new opportunities for research.

At the same time, the research on anomaly detection methods has seen significant
advancements. Recently, deep learning (DL) techniques for anomaly detection have
become increasingly popular among researchers and practitioners [11]. In particular,
autoencoding methods based on artificial neural networks (ANNs) have shown state-
of-the-art results on the benchmark anomaly detection datasets [12, 13, 14]. Deep
learning methods seem to be particularly appealing for network intrusion detection,
as they are able to extract rich representations from input and scale well to large
datasets [15, 11].

To the best of our knowledge, comprehensive algorithmic studies in the field of
network intrusion detection are few and far between. Many papers proposing new
methods use only one dataset for evaluation or rely on outdated datasets, some of
which have been shown to be unrealistic, such as KDDCUP’99 [16]. Consequently,
we observe the potential for more thorough studies that evaluate state-of-the-art
anomaly detection techniques on several representative network intrusion datasets.

1.2 Purpose
Given the context presented in Section 1.1, this work provides a comparison of anomaly
detection algorithms and techniques for network intrusion detection. Specifically, we
compare deep-autoencoding-based models operating in the semi-supervised mode
against classical anomaly detection methods. Furthermore, we analyze the difference
in performance of the models trained on the network flow and aggregated-flow features.
To the best our knowledge, such a study has not been conducted yet.

Our primary aim is to study the baseline detection performance that can be
achieved using the selected techniques. Additionally, we pursue gaining useful insight
on the semantics of the detection process.

1.3 Research Questions and Methods
In this thesis, we pursue answering the following questions:

• How do deep-autoencoding-based models stand in comparison to the meth-
ods based on alternative paradigms for the task of detecting network traffic
anomalies? We experiment with three kinds of deep autoencoding models:
Autoencoder (AE), Variational Autoencoder (VAE), Autoencoding Gaussian
Mixture Model (AEGMM); and two classical models: Isolation Forest (IF) and
Mahalanobis distance (MAH). We carry out an empirical comparison of the
algorithms over three modern network intrusion detection datasets (CTU-13,
CICIDS 2017, and IoT-23), aiming to establish if the deep learning methods
bring a significant improvement over the classical approaches. We train and
evaluate the models in the semi-supervised mode - a simple, yet realistic setting
that uses anomalous data only for tuning of hyperparameters.
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• Does using aggregated statistics of network traffic as input features improve
the performance of the models?
Network traffic data is typically provided in the format of network flows which
can be seen as data points that describe single network connections. A straight-
forward approach to anomaly-based network intrusion detection is to train
models using network flow attributes as input features. Another approach is to
aggregate network flows by each device, and compute a new set of statistical
features that describe network activity at the device level. We refer to this
operation as “network flow aggregation”. Our motivation behind studying
network flow aggregation stems from the fact that several publications state
that it may reveal new patterns beneficial for detecting network anomalies [7,
17].

• What kind of attacks can be efficiently detected using the above techniques?
The selected network intrusion detection datasets contain a diverse range of
attack scenarios. We investigate which of them can be detected efficiently using
the selected anomaly detection techniques based on network flow data.

This study follows a quantitative research approach to answer the proposed
research questions. Thus, we base our conclusions on the results obtained on the
experimental data using a thorough comparison methodology.

Figure 2 illustrates the research process of this thesis. We began in the stage
of theory, where we reviewed the literature on the topic, formulated the research
questions and explored available datasets. We continued with the practice stage,
where we designed our methods and conducted experiments. We had to iterate this
process several times as new findings, ideas, and software bugs were observed. A few
times, we had to go back to theory, studying additional literature and refining our
research questions. Once we obtained our final results, we reached the presentation
stage, where we made conclusions and reported the results.

Figure 2: Research process
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1.4 Structure of the Thesis
The remainder of this thesis is organized as follows:

• Section 2 reviews the previous work related to the objective of applying anomaly
detection methods to network intrusion detection.

• Section 3 provides background information on network security and anomaly
detection.

• Section 4 discusses the aspects of anomaly-based network intrusion detection
and provides a formalization of the overarching task.

• Section 5 gives an overview of the selected network intrusion datasets, identifying
their main properties.

• Section 6 describes our methods and comparison methodology, and gathers the
obtained results.

• Section 7 answers the research questions based on the findings and identifies
limitations of and future directions for this work.
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2 Related Work
Anomaly-based network intrusion detection is a large and actively developing research
area. In what follows, we review some of the influential past publications that are
related to our work.

Several non-parametric statistical-based methods have been proposed for network
intrusion detection. Kruegel and Vigna [18] present an intrusion detection system to
detect attacks against web servers and web-based applications. The system takes as
input web server logs and derives automatically statistical profiles associated with the
referenced web application. The learned profiles are then used to assign an anomaly
score for each web request. Mahoney and Chan [19] propose two probabilistic models:
the packet header anomaly detection (PHAD) and the application layer anomaly
detection (ALAD) model. The models use nonstationary statistical profiling, in
which probabilities are estimated based on the time since the last observation of an
event rather than its average rate. The PHAD model inspects network packets using
the header attributes. The ALAD model inspects server TCP connections using such
attributes as the application protocol keywords, TCP flags, IP addresses, and port
numbers. The models are evaluated on the 1999 DARPA IDS dataset (cf. Section 5).

Parametric statistical techniques have also been used for modeling network traffic.
Simmross-Wattenberg et al. [20] present a two-stage approach for detecting network
traffic anomalies. First, the authors use α-stable first-order distributions to model
30-minute windows of network traffic. Second, they apply generalized likelihood
ratio test to classify whether the traffic windows are anomalous. The authors focus
on detecting two types of attacks, namely floods and flash crowds, and evaluate
their method on a custom dataset containing traffic from two university routers.
Nguyen et al. [21] propose using the Holt-Winters algorithm, a classic forecasting
technique for time series data, to find anomalies in network traffic. The authors
apply Holt-Winters to monitor four metrics extracted from the network flow data.
Anomalies are detected when any of the metric observations falls outside of the
predicted range. For evaluation, the authors create a custom dataset that contains
traces of the flooding and port scanning attacks.

Clustering and k-nearest neighbor (kNN) techniques have been proposed for
network intrusion detection. Eskin et al. [22] present a framework for unsupervised
anomaly detection. First, they apply two mappings to transform the input feature
space: a data normalization mapping and a spectrum kernel mapping. Then, they
train three algorithms on a set of unlabeled data points from the transformed space.
Specifically, they compare a clustering-based model, a kNN model, and a support
vector machine (SVM) model. The clustering algorithm produces fixed-width clusters
in one pass through the data; the data points in the small clusters are detected
as anomalies. For evaluation, the authors use the KDDCUP’99 dataset. García et
al. [7] propose a clustering-based method called BClus. They use the Expectation-
Maximization algorithm to cluster the aggregated network flow data. In the second
stage, they use RIPPER, a propositional rule learning algorithms, to classify the
obtained clusters as normal or anomalous. The authors evaluate BClus on the
CTU-13 botnet dataset (presented in the same paper).
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Several publications have studied the effectiveness of principal component analysis
(PCA) for network intrusion detection. Ringberg et al. [23] identify the main
challenges of using PCA to detect traffic anomalies. They show that tuning PCA to
effectively operate in a real-world environment is difficult and requires more robust
approaches than a straightforward one. Brauckhoff et al. [24] show that simple PCA
fails to capture the temporal correlation of network traffic and propose replacing
it with the Karhunen-Loeve expansion. Kanda et al. [25] present a PCA-based
algorithm called ADMIRE for detecting anomalies in flow-based data. ADMIRE
uses three-step random projections and an adaptive parameter setting to improve
detection performance. The authors use the MAWI dataset for evaluation and
conclude that ADMIRE outperforms a classical PCA-based detector.

Numerous classification-based methods for network intrusion detection have been
proposed. Moustafa and Slay [26] compare a selection of classification algorithms,
including naïve Bayes, decision trees, ANNs, and logistic regression on two datasets:
the UNSW-NB15 dataset (presented in the same paper) and KDDCUP’99. Bilge
et al. [27] propose a flow-based botnet detection system called Disclosure. The
authors train (in a supervised way) a random forest classifier to distinguish command
and control (C&C) communication from benign network traffic. To reduce the
false positive rate, Disclosure uses external reputation scores, such as Google Safe
Browsing. For evaluation, the authors use two network environments: a medium-size
university network and a tier 1 internet server provider (ISP) network.

Recently, deep learning-based anomaly detection methods have become popular
among researchers [11]. Kwon et al. [28] apply various deep learning models, including
multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs) for anomaly detection in network traffic. The authors use
three public datasets for evaluation: NSL-KDD, Kyoto Honeypot, and MAWI. Torres
et al. [29] propose using a large short term memory (LSTM) network to detect
malicious behavior by modeling network traffic as a sequence of states that change
over time. The authors evaluate the model on two captures from a university network
that contain traces of malicious botnet activities. They show that LSTM achieves
good performance overall but struggles with a few cases, where the botnet behavior
is not as easily differentiable.

Numerous recent works propose using deep learning-based autoencoding (AE)
models for network intrusion detection. Several authors [30, 31, 32] adopt a two-
stage approach: first, they use autoencoding-based models to extract compact
representations of data points; second, they use the learned representations as input
features for standard supervised classifiers, such as logistic regression. A more
interesting and practical approach is to train autoencoding models in the fully
unsupervised or semi-supervised mode. Mirsky et al. [33] present Kitsune - a novel
autoencoder-based NIDS, which can learn to detect network attacks in an online and
unsupervised manner. The authors mainly focus on the scalability of the system;
however, they claim Kitsune achieves performance comparable to offline anomaly
detectors. The evaluation is performed on a custom dataset.

Further, multiple publications [34, 35, 17, 36] propose using more advanced
probabilistic versions of autoencoders, such as the variational autoencoder (VAE)
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and the conditional variational autoencoder (CVAE). An and Cho [34] propose using
the reconstruction probability as the anomaly score for VAE. They show that VAE
outperforms AE- and PCA-based methods on the benchmark datasets, including
KDDCUP’99. Xu et al. [35] apply VAE for detecting anomalies in seasonal key
performance indicators of web applications. Although this security task is different
from network intrusion detection, the authors show that their unsupervised method
outperforms a supervised ensemble approach by a wide margin.

Despite a surging number of publications proposing novel methods for network
intrusion detection, to the best of our knowledge, there seems to be a lack of
comprehensive studies, that undertake a rigorous comparison of methods and evaluate
them over several representative datasets. A work that gets closer to the topic in
hand is that of Falcão et al. [37], which compares a total of 12 unsupervised
anomaly detection (statistical, neighbour-based, density-based, and classification-
based) algorithms on five network intrusion datasets (KDDCUP’99, NSL-KDD,
ISCX2012, ADFA-LD, and UNSW-NB-15). The authors identify the families of
algorithms that are more effective for network intrusion detection and the families that
are more robust to the choice of configuration parameters. Another study by Skvára
et al. [12] compares deep generative autoencoding models (including VAE) against
classical algorithms on a large number of benchmark datasets in semi-supervised and
unsupervised settings. The authors conclude that the performance of the generative
models is determined by the selection process of their hyperparameters. However,
the study does not consider the domain of network intrusion detection.

Several previous works [7, 17] propose aggregating network flows; however, to the
best our knowledge, no research on the efficacy of this method has been published.

Our work presents a thorough comparison of deep autoencoding-based models
and classical methods for network intrusion detection. We train the models in a
semi-supervised fashion and evaluate them on three representative modern datasets.
Furthermore, we investigate if using the aggregated statistics as input features over
the original network flow attributes improves the performance.
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3 Background
In this section, we provide a basic introduction to the two separate fields of computer
science that are necessary for understanding our work: network security and anomaly
detection.

3.1 Network Security
In this subsection, we first explain the basic concepts of networking and principles
of communication. We discuss the TCP/IP model and the principles of network
communication protocols, such as IP, TCP and UDP. Finally, we look at the different
phases of a cyberattack and give an overview of the cyberthreat landscape.

3.1.1 Networking Fundamentals

Communication is a complex process. When a group of people plans to engage in
a conversation, they first need to find a place where they can hear each other and
agree on the language they will speak. They will likely start with greetings and
introductions, following appropriate social norms. The process is similar in computer
networks, albeit more complicated and less arbitrary.

A computer network is a group of connected devices that can communicate with
each other. Network devices, also called network nodes, can be personal computers,
servers, phones, IoT devices, and others. Network nodes are interconnected utilizing
some communication media that can be either cable (e.g., twisted pair or optical
fiber) or wireless (e.g., WiFi, cellular).

Computer networks are generally classified into [38]:

• Local Area Networks (LAN): A LAN is a small private network, usually limited
to a single building.

• Metropolian Area Network (MAN): A MAN is a larger kind of network that
typically covers a whole city/metropolitan area.

• Wide Area Network (WAN): A WAN is the largest kind of networks that
typically covers whole countries/continents

For historical reasons, there exist two reference models that describe how commu-
nication systems operate: the Open Systems Interconnection (OSI) model and the
Internet protocol suite, also known as TCP/IP. The former is a more comprehensive
reference framework for general networking systems, while the latter is used in the
Internet and similar computer networks . The TCP/IP model is sometimes seen as a
concise version of the OSI model [39], for which reason we will use it in this thesis.

The TCP/IP model follows the layering principle, dividing a communication
system into four abstraction layers, as described in Table 1. Each layer provides
some specific functionality to the layer above it and uses the services of the layer
below it. For example, the transport layer relies on the internet layer and serves
the application layer. Interactions between network devices at the save layer follow
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a system of rules called a communication protocol. Communication protocols are
designed to exchange specific units of data called protocol data units (PDU). The
layer at the destination receives the PDU sent by the layer at the source. For example,
the PDU of the internet layer is a data packet.

Layer PDU Function
4 Application Data Provides software applications with

standardized data exchange.
3 Transport Segment,

Datagram
Maintains end-to-end communications
across the network

2 Internet Packet Exchanges packets across network
boundaries

1 Link Frame Moves packets between different hosts
on the same local network link

Table 1: Layer architecture of the TCP/IP model, adapted from [39]

In what follows, we will describe the main layers and protocols of the TCP/IP
model:

• Link layer. The link layer is responsible for the physical transmission of data
within the local network segment (link) that a device is connected to. The
protocols residing in this layer operate this layer operate at the hardware level.

• Internet layer. The internet layer is responsible for exchanging data between
networks. The principal protocol of this layer is the Internet protocol (IP). IP
delivers packets of data from the source node to the destination node based
on their IP addresses, which are unique numerical labels that are assigned
to all nodes. This process is called routing. There are two versions of the
Internet protocol: IPv4 and IPv6. The main difference is that IPv4 uses 32
bit IP addresses, and IPv6 - 128 bit IP addresses. As previously mentioned,
data travels across the network in packets due to the physical limit on the
amount of data that can be transmitted at one time. An IP packet consists of
a header section that contains the source and destination IP addresses, and a
data section also called a payload. Figure 3 illustrates the structure of an IPv4
header. IP is a connectionless protocol, meaning that no session information is
retained by either the source or the destination node. It is agnostic to the data
structures at the transport level.

• Transport layer. The transport layer is responsible for end-to-end communication
between network nodes. In other words, it ensures that data is transferred from
the source node to the destination node, offering control over the reliability of
the transmission. The two main protocols residing in the transport layer are
the Transmission Control Protocol (TCP) and the User Datagram Protocol
(UDP). Both protocols segment the data into pieces that get encapsulated in
IP packets and sent across the network using the IP protocol.
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Figure 3: The IPv4 header, taken from Computer networking : a top-down approach
[38]

TCP provides reliable transmission of data, ensuring that all the packets arrive
in order and that there are no duplicated, corrupted, or lost packets. TCP is a
connection-oriented protocol, meaning that it establishes a connection between
the source node and the destination node before any data is sent and closes it
afterward. TCP implements these control mechanisms using special bits in its
header called TCP flags; e.g., the ACK flag that is used for acknowledgment.
Figure 4 illustrates the structure of a TCP header. TCP is a complex protocol
and has high latency due to its reliability features.
UDP is a connectionless transport protocol that provides "unreliable" transmis-
sion of data. Unlike TCP, it does not establish a connection between nodes and
does not feature error-control mechanisms. UDP is useful in applications like
audio or video streaming where low latency is more important than reliability.
Figure 5 illustrates the structure of a UDP header.
Transport protocols use network ports to allow multiple conversations between
network nodes simultaneously. A network port is a logical construct (represented
using an unsigned number) that identifies a specific process or service on a
host, which is itself identified by the IP address. Network ports are specified
in the transport protocol headers, while IP addresses are specified in the IP
headers.

• Application layer.
The application layer provides software applications with data exchange services
established by the lower layers. Examples of protocols residing in the application
layer are:

– Hypertext Transfer Protocol (HTTP) is extensively used in the World
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Figure 4: The TCP header, taken from [38]

Figure 5: The UDP header, taken from [38]

Wide Web for managing data communication between web clients and
servers. HTTPS is a secure version of HTTP.

– File Transfer Protocol (FTP) is used for transferring files between a client
and server.

– Simple Mail Transfer Protocol (SMTP) is used for electronic mail exchange.
– Internet Relay Chat Protocol (IRC) is used for communication in the form

of text.
– Message Queuing Telemetry Transport Protocol (MQTT) is a lightweight

messaging protocol for IoT devices, optimized for high latency or unreliable
networks.

3.1.2 Cyberthreat Landscape

In this section, we describe common types of cyberattacks and give a brief overview
of the cyber threat landscape.
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A cyberattack is any kind of malicious activity that targets computer networks
or devices [3]. Attackers try to exploit network device or protocol vulnerabilities to
gain unauthorized access, steal data, or disrupt the normal functioning of the system.
Their motives can vary from personal gain to military intelligence.

A kill chain is a military concept that describes the structure of an attack.
Although not all cyber attacks follow every phase of the kill chain, it is a useful tool
for attack analysis and defence planning. Table 2 explains the kill chain phases.

# Phase Actions
1 Reconnaissance Research, identification and selection of targets
2 Weaponization Pairing remote access malware with exploit into a

deliverable payload
3 Delivery Transmission of weapon to target
4 Exploitation Once delivered, the weapon’s code is triggered ex-

ploiting vulnerable applications or systems
5 Installation The weapon installs a backdoor on a target’s sys-

tem, allowing persistent access
6 Command & Control Outside server communicates with the weapons
7 Actions on Objective The attacker works to achieve the objective of the

intrusion

Table 2: Phases of the intrusion kill chain, adapted from [40]

Some common types of cyberattacks include:

• Network scanning. In a network scanning attack, the adversary attempts to
discover listening ports on the devices in a network. To achieve it, the adversary
selects a list of port numbers and tries to establish a connection on each port.
More specifically, there are three kinds of port scanning attacks:

– Vertical scan: a scan against a group of IPs for a single port
– Horizontal scan: a scan against a single IP for a group of ports.
– Box scan: a combination of the above.

The purpose of network scanning is reconnaissance: the adversary’s goal is to
gather information on the target infrastructure, which will be utilized in the
next phase of the attack.

• Denial-of-Service (DoS) attacks. In a DoS attack, the adversary attempts
to disrupt the normal functionality of a network service, typically to make
it unavailable for the users. DoS attacks can target a single computer, e.g.,
a bank server, or an entire network. DoS attacks are typically executed by
flooding the target with traffic, exhausting its capacity to process it. When
a DoS attack is carried out by multiple computers, it is called a Distributed
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Denial-of-Service attack (DDoS). Naturally, the more resources are used in the
attack, the more powerful and disruptive it is.
There are three main categories of DDoS attacks:

– Application layer attacks. This category of DDoS attacks target the appli-
cation layer, where common web activities take place. For example, in
an HTTP flood attack, the adversary uses his computational resources
to overwhelm the target server with HTTP requests, until it is unable to
process normal traffic, as depicted in Figure 6. Application layer attacks
are particularly effective because they deplete the server as well as the
network resources. Furthermore, they can be hard to detect in time if the
malicious requests resemble normal user activity [41].

Figure 6: HTTP Flood attack, taken from [41]

– Protocol layer attacks. This category of DDoS attacks exploit weaknesses
in the transport and internet protocols. For example, in a SYN Flood
attack, the adversary misuses the TCP protocol by sending a large number
of connection requests to the target at once, never finalizing the connection
processes. Other examples of protocol-level DDoS attacks include ACK
Flood, SYN-ACK Flood, and UDP flood.

– Volumetric attacks. This category of DDoS attacks attempts to consume all
the network resources of the target by sending a massive amount of traffic
to the target. Often the adversary employs some technique to amplify the
amount of data that is sent. For example, in a DNS amplification attack,
the attacker sends fake requests to open DNS servers, making them send
large replies to the target.

• Botnets. A botnet is a group of network devices, each of which has been
compromised by an adversary, falling under his control. In this case, each
compromised device is called a bot, and the adversary is called the botmaster.
The botmaster can use various methods to create bots, like guessing or stealing
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authentication credentials or installing a piece of malware. The power of botnets
lies in their ability to self-propagate; in other words, the existing bots can
"recruit" new bots in their surrounding network. With an efficient recruitment
method, the attacker can grow the botnet at an exponential rate. Once large
enough, botnets can be used to carry out various malicious activities, such as
DDoS attacks, spam distribution, and cryptomining.
To launch an attack, the attacker needs to be able to send commands to the
bots. The communication happens through standard network protocols, such
as HTTP or IRC. There are two main control structures:

– Client/server. This is a centralized control structure where the bots receive
commands from the Command and Control (C&C) servers (Figure 7).
The advantage of this architecture (from the attacker’s point of view)
is its simplicity: operating the botnet is straightforward and fast. The
disadvantage is that it has a single point of failure - if the defenders
manage to identify and bring down the C&C servers, the whole botnet is
disrupted.

Figure 7: Client/server botnet architecture, taken from [41]

– Peer-to-peer (P2P). This is a decentralized control structure - bots take
the role of control centers, sending commands to their peers and receiving
commands themselves, as illustrated in Figure 8. The advantage of this
architecture is that it does not have a single point of failure: bringing
down one bot does not disrupt the whole botnet. The price to pay is the
increased latency and difficulty of controlling the botnet.

In 2016, one of the largest DDoS attacks in history was carried out using an
IoT botnet that was later named “Mirai” [42]. IoT devices often have serious
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Figure 8: Peer-to-peer botnet architecture, taken from [41]

security vulnerabilities that makes them perfect bot candidates. The Mirai
creators used a very simple, yet astonishingly successful technique to recruit new
bots; in essence, they were trying to login into devices using a predetermined
list of username and password pairs. The Mirai threat has not been stopped;
additionally, more sophisticated versions of the botnet, such as “Okiru”, have
emerged since the first attack. ENISA Threat Landscape Report 2018 [43]
ranks IoT botnets among the top modern cyberthreats.

3.2 Anomaly Detection
We now define the problem of anomaly detection and discuss some of its aspects and
challenges. We then give an overview of the existing anomaly detection techniques.
Finally, we provide a brief theoretical background of the algorithms used in this
work.

3.2.1 What is Anomaly Detection

Anomaly detection is a key task of machine learning and data mining. According
to Chandola et al. [44], “anomaly detection is the problem of finding observations
or patterns in data that do not conform to expected behavior”. We refer to these
nonconforming patterns as anomalies. In practice, anomaly detection is used to
solve detection problems of some kind, usually concerning defects, fraud, or other
undesirable events. Example applications include credit card fraud, medical disease
diagnosis, natural disaster prediction, and, last but not least, network intrusion
detection. The main aspects of an anomaly detection problem are the nature of
input data, the type of anomalies, and the availability of labels. All of them have to
be taken into account when choosing a suitable anomaly detection technique.
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As in a classic machine learning task, data in an anomaly detection problem
usually takes the form of a table, image, text, or sequence. Often there is a need to
perform feature engineering, which might require domain expert knowledge. The
nature of data might limit the choice of a suitable technique; for example, text mining
methods are unlikely to be directly applicable to image data. In this thesis, we are
dealing with tabular data that has mixed categorical and numeric features. The data
points and their attributes are further discussed in Sections 4 and 6.1.2.

Anomalies are typically classified into three categories:

• Point anomaly. A point anomaly is a single data point that is found anomalous
with respect to the rest of the data. For example, a thief makes an expensive
purchase with a stolen card from an otherwise low-expenditure bank account.

• Contextual anomaly. A contextual anomaly is a single data point that is found
anomalous in a certain context. For instance, a thief uses a stolen card to make
a regular transaction at an usual time or geographical location.

• Collective anomaly. A collective anomaly is a set of data points that is found
anomalous with the rest of the data. For example, a thief carries out a series
of otherwise regular transactions on an irregular basis, forming a suspicious
pattern.

Techniques for detecting point, contextual, and collective anomalies are different,
with the majority of existing methods aiming at point anomaly detection, as this
notion of anomaly is the simplest. Techniques for detecting contextual or collective
anomalies are highly domain-specific. However, it is sometimes useful to reduce
contextual or collective anomalies to point anomalies. Considering the stolen-card
examples from above, in the contextual anomaly case, we can add a new “location”
feature, so that the data points with unusual locations become point anomalies. In
the collective anomaly case, we can transform our data points to represent statistics
of transactions over certain periods of time; for example, we can calculate a new
“number of ATM withdrawals” feature over a one-week period, so that the data points
with high values of “number of ATM withdrawals” become point anomalies. In what
follows, we will see a similar reduction for network traffic data.

Obtaining labels for an anomaly detection task is typically hard due to the nature
of the problem; indeed, in domains like earthquake detection, anomalies are scarce
and limited data is available. Furthermore, abnormal behavior can be highly complex
and change over time, in which case collecting and labeling enough data to capture it
might not be feasible. On the other hand, data describing normal behavior is usually
abundant. Depending on the label availability, anomaly detection algorithms can
operate in three modes:

• Supervised mode. During training, an algorithm has access to both normal
and anomalous data points and their corresponding labels. In the stolen-card
example from above, the training data contains both normal and fraudulent
transactions with the corresponding labels.
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• Semi-supervised mode. During training, an algorithm has access to normal data
points only. In the above example, the training data contains only normal
transactions (only one label is present).

• Unsupervised mode. During training, an algorithm experiences data without any
labels. In the above example, the training data contains normal and possibly
fraudulent transactions (no labels are present).

Unsupervised anomaly detection methods typically require making strong as-
sumptions about the data and perform efficiently only when those assumptions hold
[22]. At the other end of the spectrum, supervised techniques are guided by the
labels during training, similar to classic predictive models, and do not require making
strong assumptions. Semi-supervised techniques are the middle ground between
the two and are commonly viewed as being more applicable in practice [44, 12].
Semi-supervised models train on (mostly) normal data and can utilize a small number
of anomalies for hyperparameter tuning. We adopt the semi-supervised approach in
our experiments. No matter which operational mode is used, a labeled test set is
required for evaluating the performance of the method in turn.

Anomaly detection algorithms typically assign an anomaly score to each input
instance, which is “a measure of the degree to which that instance is considered an
anomaly” [44]. In this work, we follow the convention that “the higher the score, the
more likely it is that the instance is an anomaly.” To flag all anomalous instances,
we need to turn anomaly scores into predictions. A simple way to achieve that is to
use a detection threshold. All the instances with scores higher than the threshold
get flagged as anomalies. The threshold can be selected by analyzing the top few
anomalies during the validation stage.

3.2.2 Overview of Techniques

We now give a brief overview of the existing anomaly detection techniques, describing
their underlying assumptions, advantages, and disadvantages. We follow the taxon-
omy provided in the landmark study by Chandola et al. [44], presented in Figure 9.
Lastly, we discuss the aspects of creating an anomaly detection pipeline.

• Classification-based. In a classification task, we need to specify which of K
categories some input belongs to. In the classical supervised setting, a model is
trained on a labeled set of data points that contain instances from each class,
ideally in the balanced fashion. In the anomaly detection setting, we would
have anomalous classes and normal classes, and flag an input as anomalous if
its predicted class belongs to the former. However, as discussed in the previ-
ous section, fully-supervised approaches have limited application for anomaly
detection, ceding the stage to semi-supervised or unsupervised techniques. In
these scenarios, we have only normal-data categories: either a single normal
class (one-class-based techniques) or multiple classes (multi-class-based tech-
niques). An input is predicted as anomalous if it doesn’t fall within the learned
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Figure 9: Taxonomy of anomaly detection methods from [44]

decision boundary of the normal classes, as is illustrated in Figure 10. Exam-
ples of one-class-based techniques include one-class support vector machines
and autoencoders. Multi-class classification anomaly detection models require
labels for various normal classes, and, therefore, they cannot operate in the
fully-unsupervised mode. Examples of such techniques include artificial neural
networks (ANNs), Bayesian networks, and rule-based models, e.g., RIPPER
[45].

Figure 10: Anomaly detection as a classification problem, adapted from [44]



26

• Nearest-neighbor-based. Nearest-neighbor-based anomaly detection techniques
analyze an input instance with respect to its local neighborhood. The underlying
assumption is that “normal instances occur in dense neighborhoods, while
anomalies occur far from their closest neighbours or in sparse neighborhoods”
[44]. In the basic variation, the anomaly score of a test instance is defined as
the distance to its kth neighbor from the training set. The distance between two
data points is calculated using a predefined distance metric. The advantages of
nearest-neighbor-based techniques are that they can operate in the unsupervised
mode and are fairly robust [46, 12]. One disadvantage is that defining a metric
may not be straightforward for complex data types, such as graphs or tabular
data with mixed features, which limits the applicability of these techniques.
Another disadvantage is that nearest-neighbor-based techniques do not scale
well to large datasets, as finding k neighbors of some input among many
candidates is computationally expensive. Various approaches to speed up the
search exist, such as k-d trees [47], but they alleviate the problem only to a
certain extent.

• Clustering-based. In a clustering task, we need to group similar inputs into
clusters. We can use clustering techniques for anomaly detection if we assume
that normal instances form large clusters, while anomalous instances do not
belong to any cluster or form small clusters [44]. Examples of clustering
algorithms include k-means and DBSCAN [48]. Like nearest-neighbor-based
techniques, techniques from this category can operate in the unsupervised
mode. Furthermore, clustering-based techniques are fast at the test stage.
The disadvantage is that we make strong assumptions about the structure
of the data. For example, in case anomalous instances form large clusters,
clustering-based techniques will not be effective.

• Statistical. Statistical anomaly detection techniques model normal data in-
stances using a stochastic model. The key assumption is that “normal data
instances occur in the high probability regions of the model, while anomalies
occur in the low probability regions” [44]. Statistical techniques are generally
classified into two types: parametric and non-parametric. Parametric tech-
niques use a parametric distribution, e.g,. the Gaussian distribution, to model
the data. Non-parametric techniques infer the model structure from the data;
for instance, histograms can be used to model the profile of the normal data.
Statistical anomaly detection techniques can operate in the unsupervised mode,
and are typically robust and provide interpretable results. A disadvantage is
that using statistical models requires making strong assumptions about the
underlying data distribution. Statistical models can also fail to capture complex
interactions between features of multivariate data.

• Spectral. Spectral techniques are used to embed data into a lower dimensional
subspace. They can be suited for anomaly detection assuming that normal
instances and anomalies are separable in the embedding space [44]. The
techniques from this category include Principal Component Analysis (PCA) and
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T-distributed Stochastic Neighbor Embedding (tSNE). Spectral techniques are
not anomaly detection methods per se, but if the anomalies are well-separable
in the reduced dimension, the problem can be easily solved. The advantage of
spectral techniques is that they can operate in the unsupervised mode. The
disadvantage is that they typically have high computational complexity.

When choosing a suitable method for an anomaly detection problem, one should
take into account many aspects, such as the underlying assumptions, the availability
and accuracy of labels, and the requirements on scalability, speed, and output
interpretability. While each problem has its specifics, there are a couple of general
considerations.

Firstly, it is a common practice in machine learning to conduct an empirical
comparison of several different methods, as identifying the best method based on
theory alone is often not possible. Before experimenting with more complex methods,
one should always establish a baseline that shows what can be achieved using a
simple approach.

Another common practice is to combine several techniques into a single pipeline.
For example, one can use PCA to perform dimensionality reduction, cluster the data
points using k-means, and train a classification model on the clusters. Once again,
comparing such a complex pipeline to a simpler baseline is necessary to measure the
improvement (or deterioration) in performance.

3.2.3 Algorithms

We now provide a brief theoretical background on the autoencoding and classical
methods for anomaly detection used in this work. We begin by explaining the basic
concept of autoencoding. Then, we provide a description of each algorithm, specifying
the loss and anomaly score functions. We have adopted some of the notation in this
section from the one presented in [12].

According to the definition provided by Chollet [49], “autoencoding is a data
compression algorithm where the compression function (encoder) and decompres-
sion function (decoder) are learned automatically from data examples rather than
engineered by a human”. In other words, autoencoders convert the input data into
a low-dimensional representation, and reconstruct the original input from it. This
approach of learning useful representations from data is known as representation
learning. Figure 11 illustrates the basic principle of an autoencoder.

To measure the amount of information loss that occurred during encoding and
decoding, we define a loss function between the input and reconstructed instance.
Autoencoders are data-specific models, meaning they perform well only on data
instances similar to those they were trained on. While this property makes them
less useful for real encoding tasks (a music compression algorithm that only works
on disco songs from 1970s is hardly practical), it allows us to adopt autoencoding
models for anomaly detection. In that case, we optimize the models to reconstruct
only normal data instances. As anomalies have not been experienced by the model,
their reconstruction loss will be higher than that of normal instances (ideally). The
reconstruction loss can be used directly as the anomaly score, establishing a decision
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Figure 11: A basic autoencoder, taken from [49]

boundary between the normal and anomaly classes. In this way, autoencoders can
be viewed as one-class classification anomaly detection techniques.

Let us describe the deep autoencoding models we used in our experiments. For
each model, we identify the objective loss function that is used for optimization and
the anomaly score function that measures the degree of deviation from normal.

• Autoencoder (AE) models the encoding and decoding functions with two multi
layer perceptrons (MLPs). Let X be the input data space and Z be the latent
space of compressed representations. Then, the encoder represents the mapping
e( · ; θe) : X → Z and the decoder represents the mapping d( · ; θd) : Z → X ,
where θe and θd are the parameters of the AE. Given an input instance x, its
reconstruction x′ is given by x′ = d(e(x)). The loss function of AE is the mean
squared error (MSE):

L(x, θe, θd) = ∥x − x′∥2 (1)
The anomaly score is also given by the MSE:

fAE(x) = L(x, θ̄e, θ̄d) (2)

where θ̄e, θ̄d are the learned parameters of the AE.

• Variational Autoencoder (VAE) has a similar architecture to a basic AE, but a
completely different mathematical basis [14, 50]. A VAE is a generative model:
it learns a function to approximate the underlying data distribution. The
encoder network of a VAE maps the input data point x into a latent variable z,
which models the parameters (mean and variance) of a latent normal distribution
that is assumed to generate x. To reconstruct x, we sample points from that
latent distribution and use the decoder to map the points back to the input
data space X. More formally, the encoder models a conditional probability
q(z|x; θe) and the decoder models a conditional probability p(x|z; θd). Both
distributions are assumed to be Gaussian, as well as the prior distribution p(z)
of the latent variable, p(z) ∼ N (0, I). The loss function of a VAE has a specific
name - the ELBO loss:

L(x, θe, θd) = Eq(z|x) [log p(x|z)] + λDKL (q(z|x)||p(z)) (3)
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The ELBO loss has two components: the reconstruction loss similar to AE,
and the KL divergence between the learned latent distribution and the prior
distribution, which acts as a regularizer.
The anomaly score can either be measured as the MSE or as the reconstruction
probability (the probability that both the input and the reconstructed output
are generated by the same process). In the latter case, the anomaly score is
given by:

fV AE(x) = Eq(z|x) [log p(x|z)] (4)

• Auto-Encoding Gaussian Mixture Model (AEGMM) is a novel state-of-the-art
autoencoding model proposed in [13].
A GMM is a parametric statistical model comprised of K Gaussian components
that each has density p(x) = ∑︁K

k=1 πkN (x|µk, Σk), where πk is a mixing coeffi-
cient. Mixing coefficients define the weight of each component and normalize the
total probability distribution to 1, ∑︁

k πk = 1. The Expectation-Maximization
(EM) algorithm is typically used to fit a GMM.
An AEGMM performs a dimensionality reduction of the input data using an
autoencoder and fits a GMM over the learned low-dimensional space. Figure
12 illustrates the architecture of an AEGMM.

Figure 12: Auto-Encoding Gaussian Mixture Model, taken from [13]

A low-dimensional representation z of an input instance x is obtained by
concatenation z = [zc, zr], where zc = e(x; θe) is the compressed representation
produced by the encoder, and zr = f(x, x′) is the value of the reconstruction
error given by some distance metric f(·). It is possible to use multiple distance
functions, e.g., relative Euclidean distance and cosine similarity, in which
case zr is multidimensional. The AEGMM utilizes the estimation network,
another MLP parametrized by θm, to make mixture-component membership
prediction γ̂ from z (instead of using EM). Given a batch of N samples and
their membership predictions, ∀1 ≤ k ≤ K, we can estimate the parameters in
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GMM as follows:

π̂k =
N∑︂

i=1

γ̂ik

N
, µ̂k =

∑︁N
i=1 γ̂ikzi∑︁N
i=1 γ̂ik

, Σ̂k =
∑︁N

i=1 γ̂ik(zi − µ̂k)(zi − µ̂k)T∑︁N
i=1 γ̂ik

(5)

where γ̂i is the membership prediction for the low-dimensional representation
zi, and π̂k, µ̂k, and Σ̂k are the estimated mixture coefficient, mean, covariance
for component k in GMM, respectively.
The objective loss function of the AEGMM is given by:

L(x, θe, θd, θm) = ∥x − x′∥2 + λ1E(z) + λ2P (Σ̂) (6)

This loss function includes three components:

– ∥x − x′∥2 is L2 norm that keeps the reconstruction error low
– E(z) is the "energy" of the sample x; in other words, the probability that

we could observe x. The equation for the sample energy is given by:

E(z) = − log

⎛⎜⎜⎝ K∑︂
k=1

π̂k

exp
(︃

−1
2(z − µ̂k)T Σ̂k

−1
(z − µ̂k)

)︃
√︂

|2πΣ̂k|

⎞⎟⎟⎠ (7)

– P (Σ̂) is a term penalizing small values of the diagonal entries in the
covariance matrix. It is used to avoid degenerate solutions.

– λ1 and λ2 are hyperparameters. In practice, these values will be set to
λ1 = 0.1 and λ2 = 0.005.

The anomaly score of the AEGMM is given by the GMM energy sample:

fAEGMM(x) = E(z) (8)

For further details, refer to the original paper [13].

Let us now describe the classical anomaly detection algorithms:

• Isolation forest (IF) [51] is a tree-based model adopted for anomaly detection.
An IF builds an ensemble of random trees for a given data sample. Each tree
partitions the data points by randomly selecting a feature and then randomly
selecting a split value within the range of values for the selected feature. The
number of such splits required to isolate an instance is equivalent to the path
length from the root node of the tree to the terminating node. The key
assumption is that anomalies are easier to isolate than normal instances (cf.
Figure 13), and consequently, they have shorter path lengths on average.
The anomaly score of the AF is given by:

fIF (x) = 2−E[h(x)]/c(N) (9)

where E[h(x)] is the path length averaged over all trees and c(N) is a normalizing
term.
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Figure 13: Isolating a normal xi vs. an anomalous xo instance (abstraction), taken
from [51]

• Mahalanobis distance (MAH) [52] calculates an anomaly score which is a
measure of distance from the center of the distribution of the features D to a
sample x. The distance is given by:

fMAH(x) =
√︂

(x − µ̂)T Σ̂−1(x − µ̂) (10)

where µ̂ and Σ̂ are the estimated mean and covariance of the feature distribution,
respectively.
In this work, we use an online implementation of MAH, which means that
it starts without knowledge about the distribution of the features and learns
as requests arrive [53]. Furthermore, we apply PCA to the original feature
distribution to perform dimensionality reduction first. These algorithm-design
choices allow us to efficiently apply MAH to large datasets, such as the ones
used in our experiments.

Table 3 summarizes the information about the loss and anomaly score functions
for each algorithm. We note that all of the selected algorithms are good candidates for
anomaly-based network intrusion detection, as they can operate in the unsupervised
(or semi-supervised) mode, they are suitable for medium dimensional tabular data,
and they are computationally efficient enough to be used in a real-time NIDS.
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Algorithm Loss function L(x, θ, ϕ) Anomaly score f(x)
AE MSE MSE

VAE ELBO MSE

AEGMM AEGMM loss GMM sample energy

IF N/A Avg. path length

MAH N/A Mahalanobis distance

Table 3: Algorithms, loss functions, and anomaly scores
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4 Network Intrusion Detection
This section describes different types of network intrusion detection systems (NIDS)
and their aspects. We present the two standard formats for capturing network traffic
data: packet-based and flow-based, and explain why we choose to work with the
latter. We discuss the difficulties of representing the IP address information in a way
that can be processed by the models. Then, we define network flow aggregation and
show how it can be seen as a reduction from collective anomalies to point anomalies.
Next, we identify and describe the properties of network intrusion datasets. Finally,
we provide a “roadmap” to solving a network intrusion detection problem using
anomaly detection techniques, where we give general guidelines on selecting a suitable
anomaly detection technique and finding appropriate data.

4.1 Network Intrusion Detection Systems
The task of a NIDS is to detect malicious activities, such as cyberattacks, performed
against a network by monitoring its traffic. Based on the style of detection, NIDS
are commonly classified into signature-based and anomaly-based [54]:

• A signature-based NIDS, also called misuse-based, attempts to detect attacks
by searching for their specific patterns in network traffic. Attack patterns
or signatures are created and stored in the system beforehand. By design,
a signature-based NIDS is robust at detecting known attacks and produces
interpretable results. The downside is that it is not able to detect novel attacks
with unknown signatures [3]. Another disadvantage is that such a system
requires constant signature updates, as new attacks appear and existing ones
evolve.

• An anomaly-based NIDS (ANIDS) attempts to detect attacks by searching
for unusual patterns in network traffic. The ANIDS employs some anomaly
detection technique to learn a profile of the benign network traffic data. Any
significant deviations from the learned benign profile are flagged as potential
malicious activities.
The main assumption of this approach is that the attacks launched against the
network will leave a trace in the network traffic that does not conform to the
network’s normal behavior. The ANIDS should ideally be able to detect known
as well as unknown attacks without any prior knowledge because it does not
rely on signatures [3] . However, some challenges arise in practice:

– Some network devices, such as servers or personal computers, exhibit a
very complex and variant behavior. In such environments, it is unrealistic
to expect anomaly detection techniques to perform efficiently. If the traffic
is highly non-homogeneous, the ANIDS will produce a large number of
false alarms (report benign traffic as suspicious), which may limit its
usability [5].
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– Network traffic may have periodic patterns or drift over time. For example,
the amount of traffic may peak during the daytime and fall during the
nighttime.

– Specific malicious activities, like C&C communication, can appear to be
very similar to the benign traffic, often not without the attacker’s efforts.

Table 4 summarises the advantages and disadvantages of signature-based and
anomaly-based NIDS. A successful strategy for deploying a NIDS in a real-world
environment may include both anomaly-based and signature-based approaches.

Property NIDS
Signature Anomaly

Interpretability + -
Robustness + -
Maintenance - +
Unknown attack detection - +

Table 4: Advantages and disadvantages of using signature- and anomaly-based NIDS

As this work focuses on anomaly detection techniques, let us discuss a few more
points on ANIDS.

It should be mentioned that anomalous patterns in network traffic may not
necessarily be caused by attacks and exploits. A misconfiguration of a network device
might make its behavior appear suspicious. Detecting such cases is beneficial on its
own, as they may be security vulnerabilities.

Another benefit of anomaly detection techniques is that they can be used as tools
for creating signature-based detection rules. One way is to try to extract patterns
from the detected anomalies, e.g., important features and their corresponding value
ranges, which can be used to create signatures.

Arguably, one of the most promising application areas of ANIDS is monitoring
IoT networks. Many IoT devices have a relatively simple network profile [55], which
can be learned efficiently using anomaly detection techniques. Therefore, we can
expect the ANIDS to be more precise and produce less false alarms in IoT network
environments.

4.2 Network Traffic Data
There exist two standard formats for capturing network traffic data:

• In the packet-based format, a data point is an IP packet, including its payload
and header. Thus, it provides a complete picture of the information transferred
in the network. It is a common belief that examining payload data may be
necessary for detecting certain kinds of attacks. However, one issue of working
with packet data is its sheer volume: it may be too resourcefully expensive
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to store and process data produced by a large network. Another problem is
privacy, as payload data often contains confidential information.

• In the flow-based format, In the flow-based format, a data point, called a
network flow, only contains meta-information about a connection between
network nodes.
Network flows have to be generated from the packet data using a special
networking software tool called a flow collector. The flow collector aggregates
IP packets belonging to a single connection and summarizes the information
about the sequence of packets into a network flow record. For connectionless
protocols, like UDP, a timeout value is used to determine the flow duration.
The following five-tuple identifies a network flow: the source IP address, the
destination IP address, the source port, the destination port, and the transport
protocol [56].
It should be mentioned that there are two types of network flows: unidirectional
and bidirectional. In the unidirectional case, the packets from a network node
A to a network node B are aggregated into one flow record, and the response
packets from B to A are aggregated into another flow record. In the bidirectional
case, all the packets are aggregated into a single flow record.
Table 5 shows common attributes of a network flow and Figure 14 illustrates
a typical output of a flow exporter. Depending on the configuration of the
flow exporter, additional attributes may be added to flows, such as bytes per
second, mean inter-arrival time of packets, TCP flags, and so on. As we can
see, flow-based data typically can be represented as tabular data with mixed
features.

# Attribute
1 Timestamp
2 Duration
3 Source IP
4 Destination IP
5 Source port
6 Destination port
7 Protocol
8 Number of bytes transferred
9 Number of packets transferred

Table 5: Common attributes of a network flow.

The advantages and disadvantages of working with packet- and flow-based network
data is summarized in Table 6. In the recent years, flow-based techniques have become
prevalent in research and industry [57]. Arguably the most important reason is that
it is impracticable to collect and process packet data produced by a large network.
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Figure 14: Example output of a flow exporter.

Furthermore, it is easier to work with tabular data. For these reasons, we use network
traffic data in the bidirectional flow format in our experiments.

Property Format
Packet Flow

Data completeness + -
Confidentiality - +
Storage costs - +
Processing costs - +

Table 6: Advantages and disadvantages of packet- and flow-based network data

4.3 Processing of IP Addresses
As explained above, IP addresses are used to (partially) identify network flows. It is
important to understand that IP addresses belong to a very large space (232 possible
IPv4 addresses, 2128 IPv6 addresses), and they lack natural ordering. For these
reasons, they cannot be represented using simple encodings, such as one-hot encoding.
So, how can machine learning models process them?

Ring et al. [58] identify three approaches for processing IP addresses:

1. Ignoring IP addresses. This approach discards the information about IP ad-
dresses altogether. In our experiments, we use this method for training the
models on the network flow features.

2. Extracting meaningful features from IP addresses. This approach does not use
IP address information directly, but instead calculates new features from it. In
our experiments, we perform aggregation of network flows, which is an example
of a technique from this category.

3. Defining metrics on IP addresses. This approach defines a distance metric on
IP addresses or a mapping to an embedding space. In their work, Ring et al.
[58] propose learning IP address embeddings using text mining techniques. We
do not use any techniques from this category in our experiments.

4.4 Why Aggregate Network Flows?
The concept of computing aggregated features of network flows is similar to the idea of
extracting network flows themselves. Network flows contain aggregated information
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about data packets, e.g., “total number of bytes”; thus, network flows are data points
that describe network activity at the connection level. In contrast, aggregations of
flows describe network activity at the node level.

Aggregated network flow features are extracted in the following way. First,
network flows are collected by unique source IP address and during a sliding window,
which we refer to as the aggregation window. For example, if we choose a five-minute
window, one obtained group can be all the flows sent from IP 172.16.254.1 between
23:25:00 and 23:30:00. The second step is to summarize each grouped sequence of
network flows using a new set of descriptive statistics, which we also refer to as
aggregated features. We finally obtain data points that correspond to the traffic
statistics of a network node within a single aggregation window.

Table 7 presents some examples of the aggregated features that we can calculate.
One benefit we obtain when performing this is that the computed statistics are
typically numeric. Another benefit is that we retain some of the information about IP
addresses and ports by extracting meaningful features from them, such as “number
of unique destination IPs”. Our method of aggregating network flows is presented in
Section 6.1.2.

# Attribute
1 Timestamp
2 Source IP
3 Number of unique destination IPs
4 Entropy of destination IPs
5 Mean number of packets in a flow
6 Max amount of bytes transferred in a flow

Table 7: Common attributes of an aggregation of network flows on the device IP
level

Aggregation of network flows allows us to analyze the problem from a new
perspective. It is a common belief that computing aggregated flow statistics may
reveal new patterns beneficial for detecting network anomalies [7, 6, 17]; in fact, it
can be seen as a reduction from collective anomalies to point anomalies. For instance,
in an attack like DDoS, a single bot may initiate a large number of connections in a
short burst of time. While the individual network flows may not deviate significantly
from the benign profile, the aggregated statistics will, e.g. the total number of flows
will be much higher than usual. Albeit its simplicity, a similar argument can be
applied to more complicated scenarios, such as C&C communication [7].

An additional benefit of aggregating network flows is that we further reduce the
amount of data to process, which can be of a great magnitude even in the case of
storing flow-based data. On the other hand, by computing descriptive statistics, we
are losing some of the information about individual network flows, which might be
helpful for the detection of certain types of attacks.
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4.5 Network Intrusion Dataset Properties
Selecting appropriate network intrusion datasets is crucial for the design and evalua-
tion of anomaly detection techniques [5]. During this process, the following properties
of network intrusion datasets should be taken into account [6, 3]:

• Nature of data. These properties describe the format of the provided network
traffic data. As discussed above, network traffic data can be available in the
packet- or flow-based format. Depending on the flow collector used, flow-based
data can contain different sets of features. Lastly, some attributes, like IP
addresses and payloads, may be anonymized or even removed due to privacy
reasons.

• Network environment. These properties describe the network environment and
how the data was collected. Data can be captured in a real network, or it
can be emulated using special software. Furthermore, the properties of the
captured data will depend on the network type. Examples of different network
environments include university networks, internet service provider networks,
industrial IoT networks, and so on.

• Attack types. These properties describe the present attacks and how they were
executed. Ideally, the dataset should contain a diverse and representative set
of attacks. The way the attack traces were obtained is also important. For
example, attacks can be simulated using a script, or they can be executed by
researchers in a lab which arguably produces more realistic data.

• Label availability. These properties describe the provided labels and how they
were obtained. Accurately labeled data is crucial for evaluation. The ways of
obtaining labels include conducting a manual inspection or using a signature-
based NIDS. The labeling process is often error-prone, and it is beneficial to
have an estimate of the labeling accuracy. Another important aspect is the
level of detail provided in the labels. In the basic case, the labels may only
indicate malicious and benign data points. More detailed labels may provide
specific information on performed malicious activities.

• Data Volume. These properties describe the volume and duration of data. The
volume is either specified as the total number of the data points (packets, flows)
or the physical size in GB. In general, packet-based data has a much larger size
compared to flow-based data. Duration refers to the period during which the
network traffic data was collected. For studying periodical effects, the duration
has to span a sufficient period (e.g., at least a month for comparing weekday
vs. weekend patterns) [10].

What are the properties of a perfect network intrusion dataset? According to
Ring et al. [6], it has to be “up-to-date, correctly labeled, and publicly available; and
has to contain real network traffic with all kinds of attacks and normal user behavior
and to span a long period of time.” Unfortunately, these requirements are almost
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impossible to satisfy in practice, and even if they are met, the dataset soon becomes
outdated. Therefore, it is crucial to use several datasets for conducting algorithmic
studies like ours [5, 6]. We describe the datasets used in our experiments in Section
5.

4.6 The Roadmap
In this section, we provide a “roadmap” to solving a network intrusion detection
problem using anomaly detection techniques. We identify different components of
the task and describe the steps to be taken. We follow this roadmap for designing
our own experimental methodology.

Fundamentally, anomaly-based network intrusion detection is an anomaly de-
tection problem which itself is a ML problem. Hence, most of the unidentified
components are typical for a classic ML problem, while some are specific to anomaly
detection and network intrusion detection. We have grouped the components into
six blocks that are illustrated in Figure 15:

Figure 15: The roadmap to solving a network intrusion detection problem using
anomaly detection
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• Data. In this block we select the data and decide how we use it in the experi-
ments.

– Dataset. We select a network intrusion detection dataset from the publicly
available ones or create a custom dataset, As discussed in Section 4.5,
ideally, the selected datasets should contain traffic from a real network
environment and a representative set of attacks, span a sufficient period,
and have accurate labels.

– Anomaly definition. We define what data points are considered to be
anomalies. We have discussed various anomaly definitions in Section 3.2.1.
For network intrusion detection, a common approach is to model attack
traffic as anomalous and benign traffic as normal.

– Train/test split. We define how to split the data into train and test sets.
Public datasets may already have a predefined split, which should be
preferred. Generally, we can split the data points at random or by some
scenario, e.g., by date or attack type.

• Input. In this block we define how we preprocess the data before using it to
train the model.

– Aggregation. We can compute aggregated network flow statistics if the
data is in the flow-based format. The details are discussed in the Section
4.4.

– Feature engineering and selection. We can extract new features from the
original data that better represent the underlying problem. Furthermore,
we can use a special procedure, such as the wrapper method, to find an
optimal subset of features. These techniques can improve the performance
of the anomaly detection model.

– Input standardization. We can perform input standardization to normalize
the range of independent features of the data.

• Hypothesis. In this block, we define the hypothesis space.

– Anomaly detection algorithm. We select an anomaly detection algorithm.
Generally, any of the techniques discussed in Section 3.2.2 can be used;
however, a few considerations should to be taken into account. Firstly,
the technique should be suitable for the type of the selected data, such
as medium dimensional tabular data in the case of flow-based format.
Secondly, the underlying assumptions of the technique should hold for the
data. Often, this can only be established empirically. Thirdly, the special
requirements for computational complexity, explainability, and robustness
should be taken into account.

– Loss function. We choose a loss function for the optimization of our model.
Often there is a standard choice, such as the mean squared error for AE
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(Eq. 2). The loss functions used in our experiments are presented in Table
3.

– Anomaly detection score. We choose a function to assign anomaly scores.
The anomaly score function may or may not be the same as the loss
function. For example, there are two options for VAE: the mean squared
error (Eq. 2) or the generative probability (Eq. 4). The anomaly scores
used in our experiments are presented in Table 3.

• Optimization. In this block, we define the optimization procedure.

– Operation mode. We decide if the model should be optimized in the unsu-
pervised, semi-supervised, or supervised mode (cf. Section 3.2.1). This
depends on the model itself (not all three may be applicable), the availabil-
ity of labels, the nature of the task, and so on. Generally, unsupervised or
semi-supervised techniques are preferred for network intrusion detection.

– Optimization procedure. We define the procedure to optimize the model.
For deep learning models, we need to select an optimization algorithm,
such as Adam, and specify its parameters.

– Hyperparameter selection. We can experiment with different combinations
of the hyperparameters of the model and the optimization algorithm. The
best performing combination is typically identified on the validation batch.

• Output. In this block, we define how to postprocess the output of the algorithm.

– Anomaly threshold selection. We define a procedure to select the anomaly
detection threshold (see Section 3.2.1). For example, we can choose the
best performing threshold on a hold-out batch which we refer to as the
threshold batch.

– Postprocessing procedure. We can design a postprocessing procedure to
clean up the output of the model.

• Evaluation.

– Performance metric. We choose a metric to evaluate the model’s perfor-
mance. The common choices include F1-score and ROC AUC. However,
depending on the nature of the problem, using a custom performance
metric may provide a better picture.

– Results examination. We can examine the results more thoroughly, such
as by analyzing false positives, feature importance, and performance per
different attack types. Such analysis can help us obtain insight into the
model’s behavior, which is often more valuable than achieving a higher
value of the performance metric.
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5 Datasets
We evaluate the methods on three modern network intrusion datasets: CTU-13 [7],
CICIDS 2017 [8] and IoT-23 [9]. This section provides a short description of each
dataset and some of its most relevant properties.

We will need some basic definitions:

• Benign and Attack Labels. We use the following convention for the label names:
the data points that indicate some suspicious or malicious activity have the
label “attack”, and the rest have the label “benign”.

• Attack scenarios. By an attack scenario we mean a specific case of the execution
of some attack. For example, it may be a DDoS attack executed on March 14,
2016. In the following, we have identified the attack scenarios of each dataset.

• Contamination rate: The contamination rate, also called the anomaly ratio, is
the percentage of attack data points (anomalies) in a single attack scenario or
a whole data set.

5.1 Dataset Descriptions
5.1.1 CTU-13

The CTU-13 dataset [7] was created in the CTU University in 2011. The authors
captured traffic from the university network and executed 13 different botnet attacks,
performing various malicious actions, such as DDoS attack and port scanning [59].
Table 8 shows the characteristics of the CTU-13 attack scenarios.

The CTU-13 data is available in both packet and bidirectional network flow for-
mats. The authors provide three types of labels: "attack", "normal" and "background".
The difference between normal and background traffic is that the latter has not been
manually examined and can potentially contain malicious traffic. However, in our
experiments, we consider the background traffic to be normal for the reason that
there are not enough normal data points alone. The dataset is publicly available.

5.1.2 CICIDS 2017

The CICIDS 2017 dataset [8] was created by the Canadian Institute for Cybersecurity.
The network traffic was emulated with special software using a realistic network
infrastructure. The capture spans a period of five days. The authors have executed
a wide range of attacks, including SSH brute force, heartbleed, botnet, DoS, DDoS,
web, and infiltration attacks. Table 9 shows the characteristics of the attack scenarios.

The CICIDS 2017 data is available in both packet and bidirectional network flow
formats. The authors use a custom network flow collector that extracts more than
80 attributes for each flow. CICIDS 2017 contains normal and detailed attack labels.
The dataset is publicly available.
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Id Name #Total #Benign #Attack Description
1 Neris 2824609 2824609 40961 (1.45%) IRC, Spam, CF
2 Neris 1808104 1787163 20941 (1.16%) IRC, Spam, CF
3 Rbot 4710409 4683587 26822 (0.57%) IRC, PS
4 Rbot 1121062 1118482 2580 (0.23%) IRC, UDP and ICMP DDoS
5 Virut 129830 128929 901 (0.69%) Spam, PS, HTTP, Scan web

proxies
6 Menti 558911 554281 4630 (0.83%) PS, C&C, RDP
7 Sogou 114074 114011 63 (0.06%) HTTP, Chinese hosts
8 Murlo 2954167 2948040 6127 (0.21%) PS, C&C, Net-BIOS, STUN
9 Neris 2087487 1902500 184987 (8.86%) IRC, Spam, CF, PS
10 Rbot 1309775 1203423 106352 (8.12%) IRC, UDP DDoS
11 Rbot 107245 99081 8164 (7.61%) IRC, ICMP DDoS
12 NSIS.ay 325466 323298 2168 (0.67%) P2P, Synchronization
13 Virut 1925097 1885094 40003 (2.08%) SPAM, PS, HTTP, Captcha,

Web Mail

Table 8: Attack Scenarios of the CTU-13 dataset. The table specifies the number of
network flows in each scenario, as well as the contamination rate which are shown in
parenthesis. (CF- Click Fraud, PS - Port Scan, RDP - Remote Desktop Protocol,
P2P - Peer-to-peer)

Id Name #Total #Benign #Attack Description
1 Benign 529918 529918 0 (0.00%) No attack
2 DDoS 225745 97718 128027 (56.71%) LOIC DDoS
3 Port Scan 286467 127537 158930( 55.48%) NMap (sS, sT, sF, sX,

sN, sP, sV, sU,sO, sA,
sW, sR, sL and B)

4 Botnet 191033 189067 1966 (1.03%) Botnet ARES
5 Infiltration 288601 288565 36 (0.01%) Infiltration Dropbox,

download and cool disk
6 Web 170366 168186 2180 (1.28%) Web BForce, XSS and

SQL Inject.
7 Brute-force 445909 432074 13835 (3.10%) FTP-Patator, SSH-

Patator
8 DoS 692703 440031 252672 (36.48%) DoS tools: Hulk,

GoldenEye, Slowloris,
Slowhttptest; Heart-
bleed

Table 9: Attack Scenarios of CICIDS 2017 [8] (LOIC - Low Orbit Ion Canon, XSS -
Cross-Site Scripting, SQL - Structured Query Language)
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5.1.3 IoT-23

IoT-23 [9] is a novel dataset created in the Stratosphere Laboratory, CTU University,
in 2020. The dataset contains 23 captures of different network traffic from IoT
devices, out of which 20 captures contain malware traces. In each malicious scenario,
the authors execute a specific botnet malware sample on a Raspberry Pi. The benign
scenarios contain traffic from three real IoT devices: a Philips HUE smart LED lamp,
an Amazon Echo home intelligent personal assistant, and a Somfy smart doorlock.
Table 10 shows the characteristics of the attack scenarios. Due to the limitations
on computational resources, we only experiment with Mirai scenarios and limit the
total number of data points to 5,000,000.

The IoT-23 data is available in packet- and bidirectional- flow format. The
authors provide benign and malicious labels, including detailed information for
various malicious activities, performed by the botnets:

• C&C. This label indicates that the infected device communicates with a C&C
server.

• Horizontal Port Scan (HPS). This label indicates that the infected device
performs a horizontal port scan

• DDoS. This label indicates the infected device executes a Distributed Denial
of Service attack

• Attack (ATK). This label indicates that the infected device executes some other
type of attack against another host.

• File Download (FDL). This label indicates that a file is being downloaded to
the infected device.

The dataset is publicly available.

5.2 Other Datasets
Below, we provide a short overview of some of the other existing network intrusion
datasets that are publicly available:

• 1999 DARPA IDS [60] was created at the MIT Lincoln Lab. The data was
captured in a packet-based format within an emulated network environment.
The dataset contains five weeks of network traffic, including various kinds of
attacks.

• KDDCUP’99 [61], published by the University of California, Irvine, is based on
the 1999 DARPA IDS dataset, and it is one of the most popular datasets for
benchmarking of network intrusion detection methods [6]. The data contains
both packet- and flow-level attributes, and includes more than 20 different
types of attacks. Presently, the use of this dataset is frowned upon (as well
as 1999 DARPA IDS), as is has been shown to have unrealistic attacks and a
large amount of redundant records [6, 16].
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Id Name #Total #Benign #Attack Description
1 Benign (7) 130 130 0 (0.00%) Sompfy Door Lock
2 Benign (4) 452 452 0 (0.00%) Philips HUE
3 Benign (5) 1374 1374 0 (0.00%) Amazon Echo
4 Mirai (1) 1008748 469275 539473 (53.48%) C&C, DDoS, HPS
5 Mirai (48) 3394338 3734 3390604 (99.89%) C&C, Attack, FDL,

PS
6 Mirai (52) 5000000 405 4999595 (99.99%) C&C, FDL, HPS
7 Mirai (44) 237 211 26 (10.97%) C&C, FDL, DDoS
8 Mirai (34) 23145 1923 21222 (91.69%) C&C, DDoS, HPS
9 Mirai (49) 5000000 3433 4996567 (99.93%) C&C, FDL, HPS
10 Mirai (35) 5000000 4662273 337727 (6.75%) C&C, FDL, DDoS

Table 10: Attack Scenarios of IoT-23 [9]. The original scenario indices are indicated in
the parenthesis. (HPS: Horizontal Port Scan, FDL: File Download, C&C: Command
& Control communication/activities)

• NSL-KDD [16] is an enhanced version of the KDDCUP’99 dataset. The authors
removed duplicate data points from the complete KDDCUP’99 dataset and
provided more balanced train and test subsets.

• UGR-16 [10], published by Network Engineering & Security Group (NESG),
contains four months of data captured from an internet service provider envi-
ronment. The authors executed several attacks (DoS, botnet, and port scans)
and mixed them with the traffic from the real environment.

• UNSW-NB15 [26], published by the Australian Centre for Cyber Security, con-
tains normal and malicious network traffic created using the IXIA Perfect Storm
tool in a realistic network testbed. The executed attacks include backdoors,
DoS, exploits, fuzzers, and worms.

5.3 Overview
In what follows, we summarize the properties of the selected datasets and argue
why they constitute a proper context for a general evaluation of anomaly detection
techniques. Table 11 provides an overview of the selected datasets with respect to
the common properties identified in Section 4.5.

Firstly, the datasets contain traffic from three different network environments:
university network traffic, emulated traffic, and IoT traffic. This diversity allows us
to avoid overfitting to a particular environment when making conclusions, but at
the same time, it allows us to identify the most promising use cases. Secondly, for
all three datasets, the provided traffic is available in the bidirectional network flow
format, which essentially allows us to apply the same methods to them. Thirdly, each
dataset contains a wide range of executed attacks and the corresponding detailed
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labels. As we have already pointed out, obtaining accurately labeled data is crucial
for evaluating anomaly detection methods.

Lastly, we should mention that any of the datasets presented in Section 5.2 also
could have been used in the study, but were not included due to the computational
and time limitations.
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6 Experiments
In this section, we present the experimental part of our work, in which we have
conducted a thorough comparative study of anomaly detection techniques for network
intrusion. Section 6.1 provides a detailed description of the experiment setup, which
includes the processing and splitting of the data, the algorithm setup, and the
evaluation methodology. Section 6.2 presents the obtained results and the main
findings, which are further discussed in Section 6.3.

6.1 Experiment Setup
In this section, we present our experiment methodology. In essence, our goal is
to compare five different anomaly detection algorithms (AE, VAE, AEGMM, IF,
and MAH, presented in Section 3.2.3) trained in the semi-supervised mode on the
network intrusion data from three sources (CTU-13, CICIDS 2017, and IoT-23,
presented in Section 5), with and without network flow aggregation. For every
possible combination of the algorithms and data sources, we have carried out an
experiment consisting of training a model, selecting the optimal detection threshold,
and evaluating its performance on a test set. For designing our methodology, we
followed the steps from the roadmap (presented in Section 4.6)

6.1.1 Benchmark Data

To evaluate the selected algorithms in a realistic way, we use the data from the
original sources to create appropriate anomaly detection benchmarks. As previously
mentioned, we use data in the bidirectional network flow format.

Firstly, we need to provide the definition for anomaly. Here we make the common
choice of modeling benign network traffic as normal and attack traffic as anomalous:

benign = normal, attack = anomalous

The next step is to preprocess the original data, which includes inferring the
missing values, parsing TCP flags and other attributes. For each dataset, we extract
a set of network flow features as specified in Appendix A. For categorical features ,
such as protocol, we use One-Hot Encoding (OHE). We encode binary features, such
as fwd_ack_flag (a TCP ACK flag sent from the source to the destination node),
using a single binary column.

With regard to our benchmarks, Figure 16 illustrates our methodology on the
CTU-13 example. As can be seen from the figure, for each original dataset we obtain
six different versions of benchmark datasets. There are two stages in the process:
aggregation of network flows and splitting the data into train and test sets. We have
already discussed the idea behind network flow aggregation in Section 4.4, and we
provide the details for our aggregation method in Section 6.1.2. We use two different
aggregation windows: a one-minute window and a three-minute one. Thus, after the
first stage of aggregation, we have three versions of the data: the original network
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flows (denoted as NO_AGGR), and the aggregations of the flows over one minute
(AGGR_1M) and over three minutes (AGGR_3M).

Figure 16: Creating benchmark datasets from the original data. (Stage I Aggregation:
NO - no aggregation, 1M - aggregation over a one-minute window, 3M - aggregation
over a three-minute window; Stage II Splitting: R - splitting into train/test at random,
S - splitting into train/test by attack scenario).

The second stage is separating the data into train and test splits. Here we use
two different strategies:

• Split-at-random. As the name suggests, we separate the data into train and
test splits at random. First, we separate all the data points into normal
and anomalous. We randomly take 80% of the normal data and 20% of the
anomalous data for training, and randomly shuffle the data points. Conversely,
we randomly take 20% of the normal data and 80% of the anomalous data
for testing, and randomly shuffle the data points. The logic behind the choice
of percentages is motivated by the fact that we want to ensure a significant
presence of anomalies in the test set, given the existing class imbalance. As
we train the models the semi-supervised mode, we only use the anomalies in
the training set for hyperparameter tuning and detection threshold selection.
On the other hand, both anomalous and normal data points are used during
testing. Thus, we believe it is beneficial for an accurate evaluation to place a
larger percentage of the anomalies into the test split.
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• Split-by-scenario. In this case, we split the data points by attack scenarios.
The attack scenarios for each dataset have been discussed in Section 5). Table
12 presents our choice of the training and testing splits for each dataset. For
CTU-13, we have used the split suggested in the original paper [7]. For CICIDS
2017 and IoT-23, there are no predefined splits; hence, we have made the choice
ourselves.

Dataset Scenario ID
Train Test

CTU-13 3, 4, 5, 7, 10, 11, 12, 13 1, 2, 6, 8, 9

CICIDS 2017 1, 2, 3, 6 4, 5, 7, 8

IoT-23 1, 2, 3, 4, 6, 7 5, 8, 9, 10

Table 12: The selected train/test scenario splits for each dataset. The scenarios for
each dataset are described in Tables 8, 9 and 10. We identify the scenarios by their
IDs, that we assign ourselves.

We hypothesize that the split-by-scenario case poses a more difficult task for
the models, as they do not experience either normal or anomalous data points from
any of the test scenarios. While the benign traffic of the test scenarios is likely to
resemble that of the train scenarios, the attack traffic may exhibit a completely
different nature, which might make it harder to detect. In this way, we can test how
good the models are at detecting unknown attacks in a more realistic fashion.

The last step in the benchmark creation is the construction of train, threshold
and test batches (Table 13):

• Train Batch. This batch is used for the training of the models. It contains only
normal data points that are taken from the train split.

• Threshold Batch. This batch is used for hyperparameter tuning and detection
threshold selection. It has a fixed size of 10000 data points and a fixed
contamination rate of 5%. We have found that having a fixed percentage of
anomalies helps with finding a good detection threshold. The normal and
anomalous data points of the threshold batch are sampled from the train split.
We sample the normal data points uniformly, but we sample the anomalies
"fairly", i.e. in such a way that each attack is represented in an equal proportion.
The reason why is that the number of available data points per attack type
varies greatly, e.g., it is substantial for a DDoS attack, but small for C&C
communication. We stress that only the data points from the train split are
taken; in the split-by-scenario case, the attacks from the testing scenarios don’t
get selected into the threshold batch.

• Test Batch. The test batch is used for the final evaluation of the models.
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In the split-at-random case, we take all the normal data points from the test
split, but we re-sample the test anomalies (fairly) so that they constitute 10 %
of the batch. We found that fixing the contamination rate of the test batch
produces more interpretable results and allows us to compare the models in a
more meaningful way.
In the split-by-scenario case, we take all the normal and anomalous data points
as is, preserving the original contamination rate, as well as the total number of
data points.

Batch Split
Random Scenario

Train • all normal from train
split

• all normal from train
split

• no anomalous • no anomalous

Threshold • 9500 normal from
train split

• 9500 normal from
train split

• 500(5%) anomalous
from train split

• 500(5%) anomalous
from train split

Test • all normal from test
split

• all normal from test
split

• 10% anomalous from
test split

• all anomalous from
test split

Table 13: Construction of train, threshold and test batches. The percentages are
given with respect to the total batch size. If the percentage of anomalous data points
is fixed, they are fair-sampled (with replacement if there are not enough points).

To summarize, the flow of a single experiment is as follows: given a benchmark
dataset as input, a model is trained on the train batch, the optimal values of detection
threshold and hyperparameters are tuned on the threshold batch, and the model is
evaluated on the test batch.

6.1.2 Aggregated and Network Flow Features

In this section, we explain our method for aggregating network flows. The motivation
for performing this operation was given in Section 4.4. Finally, for each dataset we
identify the set of features used to train the models for both NO_AGGR and AGGR
cases.

Recall that we group network flows by source IP address, and for each group we
calculate a set of descriptive statistics over a sliding aggregation window of fixed
width. The width should be long enough to capture the attack patterns and short
enough not to capture too much traffic. The optimal width of the window is specific
to each dataset, so it is a good idea to try several values. In this work, we use two
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aggregation windows for each dataset: a one-minute window (AGGR_1M) and a
three-minute one (AGGR_3M).

We calculate the descriptive statistics in the following way. For numerical
features, we calculate the mean, maximum, minimum, median, and standard deviation
(SD). For example, for the network flow feature tot_byts, the total number of
bytes exchanged in a network flow, we obtain five new features: tot_byts_mean,
tot_byts_max, tot_byts_min, tot_byts_median, and tot_byts_std. For categorical
features, we calculate the number of unique values and the information entropy,
H(X) = − ∑︁

i PX(xi) log PX(xi). For example, for the list of destination IP addresses,
we obtain two new features - dst_ip_num_uniq and dst_ip_entropy. Lastly, we
need to explain how to infer new labels for the aggregated data points. We use the
following rule: we assign the "attack" label if at least one flow in the group was
labeled "attack".

Table 14 shows the number of features used for training for both AGGR and
NO_AGGR data. Due to space limitations, the complete listings of features for
each dataset are provided in Appendix A. There are a few considerations to point
out. Firstly, we do not calculate the described aggregated statistics for every original
network flow feature, but only for those features that we believe are important
for detection based on our expert knowledge. Secondly, the IP address and port
information is discarded in the NO_AGGR case, as there is no simple way to encode
it (see Section 4.3). On the other hand, in the AGGR case we extract new numerical
features from the IP addresses and ports, such as dst_ip_num_uniq - number of
unique destination IP addresses, and dst_ip_entropy, the entropy of destination IP
addresses.

Dataset Num. of features
NO_AGGR AGGR

CTU-13 25 32

CICIDS 2017 76 45

IoT-23 37 57

Table 14: The number of features for each dataset

Lastly, we demonstrate how performing network flow aggregation reduces the total
number of data points and changes the contamination rates. Figure 17 illustrates the
effect of aggregating network flows on the example of Scenario 2 from the CTU-13
dataset. Due to space limitations, we present the rest of the attack scenarios of each
dataset in Appendix B. Table 15 shows the new number of benign and attack data
points for each dataset after aggregating network flows. It is important to realize
that aggregation reduces the contamination rate for certain attack types, like DDoS
and port scan attacks, where large number of flows is emitted in short bursts of time.
This is most noticeable in Scenarios 5 and 6 from the IoT-23 dataset.
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(a) No aggregation (NO_AGGR) (b) With aggregation (AGGR_3M)

Figure 17: Transforming data points using network flow aggregation on Scenario 2
(Neris), CTU-13

Dataset NO_AGGR AGGR_1T AGGR_3T
# Benign # Attack # Benign # Attack # Benign # Attack

CTU-13 19531537 444699 (2.23%) 5944746 5608 (0.09%) 5567856 2140 (0.04%)
CICIDS 2273096 557646 (19.70%) 194278 1006 (0.52%) 147282 443 (0.30%)
IoT-13 5143210 14285214 (73.53%) 24993 8736 (25.90%) 23597 2926 (11.03%)

Table 15: Reducing the number of data points using network flow aggregation
(contamination rates are shown in parenthesis)

6.1.3 Aggregation of Anomaly Scores

In this section, we propose a simple post-processing method that can be used to
clean up the predictions of models trained on NO_AGGR data. We apply the same
idea of aggregation to the output of these models, which is anomaly scores assigned
to individual network flows.

Concretely, we again group network flows by a unique source IP and over an
aggregation time window. Our goal is to assign an anomaly score to each group. How-
ever, we only have the anomaly scores assigned to network flows by the NO_AGGR
model. We infer the group anomaly score in the following way - choose the maximum
anomaly score of all the flows in the group. We infer the ground truth labels in the
same way as before - assign the "attack" label if at least one flow the group was
labeled as "attack".

On a high level, the difference between aggregating network flows and aggregating
anomaly scores is as follows. In the former case, we perform the aggregation operation
first, compute a new set of features, and use them to train models and predict anomaly
scores. In the latter case, we use the original network flow features to train the
models and predict anomaly scores, and afterwards aggregate the scores. Importantly,
if aggregation window of the same width are used, both methods produce anomaly
scores for the same aggregated data points, which allows us to compare them directly.
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6.1.4 Algorithm Setup

A brief theoretical description of the selected algorithms, as well as a discussion
on their suitability for network intrusion detection have been provided in Section
3.2.3. We have implemented our framework for training and evaluating models in
Python 3.0, using a novel anomaly detection library alibi-detect [53]. For the
deep autoencoding models, we used the tensorflow backend, and for the classic
ones - sklearn.

For training of the deep autoencoding models, the Adam optimizer [62] is used
with a learning rate of 0.001. We train each model for a total of 5 epochs (limiting
each epoch to at most 500 steps) using different values of batch sizes. The specific
configuration parameters of each deep model are summarized below:

• AE: We try different configurations for the encoder and decoder networks of an
autoencoder. The number and size of layers of a decoder network architecture
always mirror that of the corresponding encoder network. As an example,
let the input dimensionality be input_dim = 30 and the dimensionality of
the compact representation be encoding_dim = 3. Suppose, the encoder runs
with FC(30, 20, ReLU) - FC(20, 10, ReLU) - FC(10, 10, ReLU) - FC(10, 3,
None). Then, the decoder architecture runs with FC(3, 10, ReLU) - FC(10,
10, ReLU) - FC(10, 20, ReLU)- FC(20, 30, None), mirroring the encoder.
In all experiments, we use ReLU as a non-linearity activation function, and
we do not use any non-linearity activation function for the last layers of the
decoder and encoder. Naturally, the output dimension of the decoder is the
same as the input dimension. For brevity, we denote the above architecture
as encoder_net = 20-10-10 and encoding_dim = 3. The input and output
dimensions depend on the dataset, and the rest can be inferred as described
above.

• VAE: The VAE architecture is conceptually similar to that of the AE, except it
has two latent variables. An example of the VAE encoder is FC(30, 20, ReLU)
- FC(20, 10, ReLU) - FC(10, 5, ReLU) - FC(5, 1, None)x2. This encoder turns
the input into two variables (the mean and variance of the modelling probability
distribution) in the latent space, that has the dimension latent_dim = 1. In
this example, the decoder will run with FC(1, 5, ReLU) - FC(5, 10, ReLU)
- FC(10, 20, ReLU) - FC(20, 30, None). We denote the above example as
encoder_net = 20-10-5 and latent_dim = 1.

• AEGMM: The compression network of the AEGMM is exacly the same as
the basic AE. An example architecture is FC(30, 20, ReLU) - FC(20, 10,
ReLU) - FC(10, 1, None) - FC(1, 10, ReLU) - FC(10, 20, ReLU) - FC(20,
30, None), where encoding_dim = 1. We use two functions for computing the
reconstruction error: euclidean distance and cosine similarity. We fix the GMM
network to be FC(1 + 2, 10, tanh)-Drop(0.5)-FC(10, 4, softmax) - FC(3, 10,
tanh)-Drop(0.5)-FC(10, 4, softmax) (the same one as in the original paper
[13]) where the last dim is num_gmm, the number of GMM components. We
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experiment with different compression network architectures and number of
GMM components. We use the batch size of 2048, as we found that a larger
batch size is beneficial for optimization.

where FC(a, b, f) means a fully-connected layer with a input neurons and b output
neurons activated by function f (None means no activation function is used), and
Drop(p) denotes a dropout layer with keep probability p during training.

The configuration parameters of the classic models are summarized below:
• IF: We experiment with different values of num_estimators , the numbers of

isolation trees used in the ensemble.

• MAH: We use an online implementation of the algorithm and perform the
dimensionality reduction before computing the Mahalanobis distance. We
experiment with values of num_components, the number of PCA components.
Since MAH is the only online method, we also use a different training procedure:
instead of optimizing on the train batch, we "warm up" the model on the
threshold batch. Hyperparameter tuning and detection threshold selection are
done in the same way as for the other models.

For brevity, we use the following convention when referring to the models. First,
we specify the algorithm used, then if it was trained on the network flow feature
set or aggregated feature set, and lastly, the source dataset. For example, by VAE
AGGR_1M IoT-23 we mean a VAE model trained on the aggregated network flows
from the IoT-23 dataset. Sometimes we are going use broader terms, e.g., the AGGR
models to specify all the models trained on the aggregated flow data.

6.1.5 Hyperparameter and Threshold Selection

In this section, we explain our methodology for selecting the optimal combination of
hyperparameters together with an anomaly detection threshold.

We experiment with different architectures of the deep-learning-based autoencod-
ing models, as well as different configurations of classic models. Table 16 presents
the tested hyperparameter settings for each algorithm. For each combination of
hyperparameters, we train a model on the train batch and evaluate it on the threshold
batch, after selecting a detection threshold as described below. Finally, we select the
combination that achieves the highest performance score on the threshold batch.

Figure 18 illustrates the evaluation process on the threshold batch. Given anomaly
scores assigned by the model, we plot a precision-recall curve and select the detection
threshold that maximizes the F1-score. By our design, the threshold batch always
has a fixed contamination rate of 5%; therefore, a well-performing model should
select a threshold value close to 95%.

6.1.6 Evaluation Methodology

We perform the evaluation of the models on the test batch using the F1-score as our
main performance metric. However, we also examine precision and recall separately.
The definitions of each metric are provided below:
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Model Parameter Dataset
CTU-13 CICIDS 2017, IoT-23

AE

encoder_net { 15-5, 20-10-5, 20-10-10-5 } { 50-10, 60-30-10 }
encoding_dim 3 3
batch_size {64, 1024 } {64, 1024 }
num_epochs 5 5

VAE

encoder_net { 15-5, 20-10-5, 20-10-10-5 } { 50-10, 60-30-10 }
latent_dim { 1, 2, 5 } { 1, 2, 5 }
batch_size {64, 1024 } {64, 1024 }
num_epochs 5 5

AEGMM

encoder_net { 15-5, 20-10-5, 20-10-10-5 } { 50-10, 60-30-10 }
encoding_dim 1 1
num_gmm { 2, 4 } { 2, 4 }
batch_size 2048 2048
num_epochs 5 5

IF num_estimators { 50, 100, 200 } { 50, 100, 200 }

MAH num_components { 2, 4, 8 } { 2, 4, 8 }

Table 16: Tested hyperparameter settings. For each model, we try every possible
combination of the hyperparameters.

(a) Precision-recall curve (b) F1-score curve

Figure 18: Selecting the optimal threshold on the threshold batch

• Precision, which answers the question of "how many selected instances are true
attacks?":

precision = TP
TP + FP , (11)

where TP stands for true positives (attack instances predicted correctly) and
FP stands for false positives (benign instances predicted as attack).

• Recall, which answers the question of “how many true attack instances are
selected?”:

recall = TP
TP + FN , (12)
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where TP stands for true positives and FN stands for false negatives (attack
instances predicted as benign).

• F1-score, which is the harmonic mean of the precision and recall:

F1 − score = 2 · precision · recall
precision + recall (13)

The F1-score is often used to measure performance for problems with class
imbalance, i.e., when one class has significantly more examples than other classes.
This metric is suitable for us, as in all but one of our benchmarks the attack class is
the minority class (see Table 15). The only exception is IoT-23 NO_AGGR that
has a contamination rate higher than 70 %; in this case, we invert the definition of
the positive class when computing the F1-score. That means that true positives are
benign instances predicted correctly, false positives are attack instances predicted
as benign, and false negatives are benign instances predicted as attack. Keeping
the original definition of F1-score (with attacks being the positive class) is not very
informative, as predicting all test data points as attacks achieves a high F1-score.

For comparison of different algorithms on multiple datasets, we follow the sta-
tistical procedure described in [63]. Based on the obtained test F1-score values, we
rank each algorithm according to its performance (from 1 to 5, with 1 being the
best-performing rank) and average the ranks over all benchmark datasets. Then, we
conduct two statistical tests: the Friedman test which answers the question of “do all
the algorithms perform equally well?”, and Nemenyi test which answers the question
of “do two algorithms perform differently on a statistically significant level?”.

The Friedman statistic is given by:

χ2
F = 12N

k(k + 1)

⎡⎣∑︂
j

R2
j − k(k + 1)2

4

⎤⎦ , (14)

where N is the number of datasets, k is the number of algorithms, Rj is the average
rank of the j-th algorithm. In our case (5 algorithms and 9 benchmark datasets) the
critical value for the Friedman test at 5% confidence level is qF

0.05 ≈ 9.244.
The Nemenyi test determines that the performance of two algorithms is signif-

icantly different if the corresponding average ranks differ by at least the critical
difference:

CD = qN
α

√︄
k(k + 1)

6N
, (15)

where qN
α is the critical value at the confidence level α. In our case, the critical value

for the Nemenyi test at 10% confidence level is CD ≈ 2.245.
The results of the comparison can be visually represented with a critical difference

diagram (see e.g. Figure 23). The diagram contains the average algorithm ranks and
connects the statistically equally performing algorithms with a thick black line.

Furthermore, to get a better understanding of the detection capabilities of our
models, we use the following two techniques:
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• Performance per attack scenario. In this case, we examine how efficient the
models are at detecting different types of attacks present in the data. We split
the test data points by their corresponding attack scenario, and evaluate the
performance for each group separately. We define the detectability of an attack
as follows: good - 85% < F1-score ≤ 100%; moderate - 65% < F1-score ≤ 85%;
poor - F1-score ≤ 65%.

• Anomaly instance score plots. An anomaly instance score plot is a useful tool
for visually evaluating how well the model separates the benign and attack
data points. For contiguous network traffic data, we plot the timestamps of
data points on the x-axis and their corresponding anomaly scores, assigned by
the model, on the y-axis. We also plot the selected detection threshold with a
black line; all the data points above the threshold are predicted as anomalies.
Figures 20 and 21 show examples of anomaly instance score plots.

6.2 Experimental Results
We report the results separately for the benchmark datasets created by splitting
data at random and by scenario. For each dataset, we compare the performance of
the models and identify detectability of the attack scenarios, and we examine some
successful and unsuccessful cases. In addition, we show how aggregating anomaly
scores assigned by the NO_AGGR models can produce similar results to the scores
assigned by the AGGR models. We conclude the section with a discussion of the
results.

6.2.1 Runtime

Firstly, we assess the computational complexity of the models. Figure 19 presents
a relative ranking of the tested algorithms by their fit and predict time, ordering
them from slow to fast. The autoencoding models are the slowest to fit, but are the
fastest at predict time. The online implementation of MAH only requires a warm
up on the threshold batch which makes it the fastest method on the fit time chart;
however, we find it to be the slowest at predict time. Overall, all the tested methods
have running times suitable for the use in a real-world NIDS.

6.2.2 Split-at-Random Benchmarks

In this section, we analyze the performance of the models trained on the benchmarks
split at random.

We report the best results obtained on the threshold and test batches. The former
can be thought of as validation performance, while the latter tells us if the model
just got lucky or cheated on the threshold batch. Due to space limitations, we specify
the selected hyperparameter configurations for each model in Appendix C.

Table 17 presents the precision-recall (PR) curves achieved by each model on the
threshold batch. As we can see, for all three datasets, the AGGR_T and AGGR_3T
models get much closer to the top right corner (precision = 1, recall = 1) than the
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(a) Fit time

(b) Predict time

Figure 19: Relative ranking of the algorithms by their fit and predict times

NO_AGGR models. Furthermore, the AGGR_3T models seem to outperform the
AGGR_T models.

Table 18 presents the values of precision, recall, F1-score and selected threshold
obtained by each model on the test batch. Keep in mind that, by our design, the
threshold batch has a fixed contamination rate of 5%; therefore, the correct detection
threshold value is always 95% percent. The selected threshold tells us if the model
achieves a high precision or recall by virtue of performing well or just making a
tradeoff.

The results from Table 18 suggest that:

• Overall, we observe comparable F1-scores for CTU-13 and CICIDS 2017. This
is somewhat surprising, as we expected to see better performance on CICIDS
2017 with its emulated network traffic. We observe the best performance results
for IoT-23. We believe this is because IoT devices generally have a simpler
network profile. If we compare the performance between the threshold and test
batches, we can see that they are, in fact, higher on the latter. This can be
explained by the fact that the test batch has a higher percentage of anomalies
(10% vs 5%), which seems to help the models achieve higher precision values.

• As hinted by the PR curves, for all three datasets, we observe a significant im-
provement in performance for the AGGR models compared to the NO_AGGR
models. This is most noticeable for the IoT-23 dataset. The numbers seem to
suggest that three-minute aggregation yields better results than one-minute
aggregation. However, this may be affected by the fact that there are fewer
data points. Another interesting observation is that the AGGR models are
also more successful at selecting the detection threshold (the values are closer
to the true 95%).

• The autoencoding models, in particular VAE and AE, seem to consistently
outperform IF and MAH in almost all cases, although the improvement is not
always significant. On the other hand, AEGMM shows inconsistent performance,
ranging from the best-performing model to the worst. In a few cases, the model
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NO_AGGR AGGR_T AGGR_3T

CTU-13

CICIDS

IoT-23

Table 17: Precision-recall curves obtained on the threshold batches. For each model
we choose the detection threshold that maximizes the F1-score on the threshold
batch.
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THRESHOLD BATCH

CTU-13 NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 88 0.268 0.644 0.379 93 0.526 0.736 0.613 95 0.712 0.712 0.712
VAE 90 0.297 0.594 0.396 95 0.654 0.654 0.654 95 0.702 0.702 0.702
AEGMM 60 0.062 0.498 0.111 93 0.347 0.486 0.405 - - - -
IF 80 0.174 0.694 0.278 90 0.371 0.742 0.495 93 0.543 0.76 0.633
MAH 85 0.195 0.586 0.293 95 0.566 0.566 0.566 95 0.682 0.682 0.682

CICIDS NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 95 0.3 0.3 0.3 97 0.7 0.42 0.525 93 0.605 0.836 0.702
VAE 95 0.322 0.322 0.322 93 0.497 0.696 0.58 95 0.744 0.744 0.744
AEGMM 93 0.236 0.33 0.275 97 0.686 0.41 0.513 97 0.875 0.518 0.651
IF 97 0.34 0.204 0.255 88 0.333 0.798 0.469 90 0.452 0.904 0.603
MAH 97 0.383 0.23 0.287 98 0.81 0.324 0.463 98 0.955 0.382 0.546

IoT-23 NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 97 0.71 0.368 0.485 93 0.686 0.96 0.8 95 0.856 0.856 0.856
VAE 98 0.71 0.284 0.406 95 0.814 0.814 0.814 95 0.846 0.846 0.846
AEGMM - - - - 90 0.492 0.966 0.652 93 0.703 0.984 0.82
IF 85 0.227 0.682 0.341 93 0.529 0.74 0.617 93 0.629 0.878 0.733
MAH 99 0.77 0.154 0.257 95 0.76 0.76 0.76 93 0.699 0.978 0.815

TEST BATCH

CTU-13 NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 88 0.434 0.651 0.521 93 0.706 0.688 0.697 95 0.821 0.637 0.717
VAE 90 0.463 0.598 0.522 95 0.797 0.596 0.682 95 0.824 0.64 0.721
AEGMM 60 0.122 0.504 0.196 93 0.523 0.466 0.493 - - - -
IF 80 0.307 0.708 0.428 90 0.563 0.793 0.659 93 0.705 0.689 0.697
MAH 85 0.303 0.666 0.416 95 0.569 0.571 0.57 95 0.862 0.574 0.689

CICIDS NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 95 0.455 0.298 0.36 97 0.819 0.447 0.578 93 0.744 0.758 0.751
VAE 95 0.469 0.312 0.375 93 0.689 0.742 0.715 95 0.843 0.669 0.746
AEGMM 93 0.376 0.325 0.349 97 0.821 0.426 0.561 97 0.91 0.36 0.516
IF 97 0.465 0.184 0.263 88 0.496 0.744 0.595 90 0.601 0.826 0.696
MAH 97 0.328 0.296 0.311 98 0.839 0.37 0.513 98 0.991 0.312 0.475

IoT-23 NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 97 0.845 0.408 0.55 93 0.828 0.975 0.896 95 0.891 0.815 0.851
VAE 98 0.851 0.332 0.478 95 0.903 0.836 0.868 95 0.91 0.771 0.835
AEGMM - - - - 90 0.668 0.926 0.776 93 0.831 0.956 0.889
IF 85 0.408 0.748 0.528 93 0.713 0.789 0.749 93 0.761 0.855 0.805
MAH 99 0.906 0.188 0.311 95 0.913 0.793 0.849 93 0.919 0.758 0.831

Table 18: Performance on the benchmark data split at random (TH: threshold, PRE:
precision, REC: recall, F1: F1-score). Best values highlighted in bold.
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has failed to converge (blank in the table). We discuss the possible reasons in
Section 6.3.

In the next step of our analysis, we examine the performance of the models per
attack scenario. Due to space limitation, we only discuss the key findings here,
providing the complete performance results in Appendix D.

• CTU-13. Table 19 presents detectability of the CTU-13 attack scenarios. Over-
all, all but one scenario have good or moderate detectability. One interesting
observation is that the best performing methods are different in each case, and
none of the models excel at detecting every single scenario. For example, the
AE AGGR_3M model is the best at detecting Scenario 6, Murlo; however, it
completely fails at detecting Scenario 7, Sogou.

Id Name Detectability Best F1 Alg. Aggr.
1 Neris Good 0.933 MAH AGGR_3M
2 Neris Good 0.9386 MAH AGGR_3M
3 Rbot Moderate 0.7329 VAE AGGR_1M
4 Rbot Moderate 0.686 VAE NO_AGGR
5 Virut Good 0.9891 IF AGGR_3M
6 Menti Good 0.9671 AE AGGR_3M
7 Sogou Moderate 0.732 AEGMM NO_AGGR
8 Murlo Poor 0.5494 VAE NO_AGGR
9 Neris Good 0.9035 MAH AGGR_3M
10 Rbot Moderate 0.7575 VAE NO_AGGR
11 Rbot Good 0.9706 VAE NO_AGGR
12 NSIS.ay Poor 0.6418 AEGMM NO_AGGR
13 Virut Good 0.8842 VAE AGGR_3M

Table 19: Detectability of the CTU-13 attack scenarios

• CICIDS 2017. Table 20 presents detectability of the CICIDS 2017 attack sce-
narios. Again, we can see that all scenarios have good or moderate detectability,
and there is a lot of variance among the best performing models. However, for
CICIDS all the best performing models are AGGR. A somewhat surprising
finding is that the infiltration and web attacks are detected efficiently, as they
are commonly believed to have poor detection capability based only on flow
information [4]. These results should be interpreted with caution as they might
be caused by some artifacts in the data or the insufficient amount of data.

• IoT-23. In case of IoT-23, instead of attack scenarios, we analyze detectability
of the malicious activities performed by the botnets (see Section 5.1.3). Table
21 indicates that all but one malicious activity has good detectability. Similarly
to CICIDS 2017, the AGGR models show better results than NO_AGGR.
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Id Name Detectability Best F1 Alg. Aggr.
2 DDoS Good 0.988 AE AGGR_1M
3 Port Scan Moderate 0.6581 MAH AGGR_1M
4 Botnet Moderate 0.7073 IF AGGR_3M
5 Infiltration Good 0.9404 VAE AGGR_3M
6 Web Moderate 0.8108 AE AGGR_3M
7 Brute-force Good 0.8857 VAE AGGR_3M
8 DoS Good 0.8669 VAE AGGR_3M

Table 20: Detectability of the CICIDS 2017 attack scenarios

Name Detectability Best F1 Alg. Aggr.
C&C Good 0.9314 IF AGGR_3M
Horizontal Port Scan Good 0.9772 AE AGGR_3M
DDoS Good 0.9856 VAE NO_AGGR
Attack Moderate 0.6842 IF AGGR_3M
File Download Good 1.0 MAH AGGR_3M

Table 21: Detectability of the IoT-23 malicious actions

6.2.3 Split-by-Scenario Benchmarks

In this section, we analyze the performance of the models trained on the benchmarks
split by scenario.

As discussed above, this setting is harder and more realistic, as the original
contamination rate is preserved in the test batch. Furthermore, the models never
experience test attacks during training, which allows us to estimate how good
they are at detecting unseen attacks. As in the split-at-random case, we perform
the hyperparameter and threshold selection on the threshold batch. Due to space
limitations, we specify the selected hyperparameter configurations for each model in
Appendix C.

Table 22 presents the values of precision, recall, F1-score, and selected threshold
obtained by each model on the test batch.

The results from Table 22 suggest that:

• Overall, the performance on the threshold batch is comparable to the split-at-
random case. Interestingly, the performance of the autoencoding models seems
to improve in some cases, e.g., for the models trained on the IoT-23 data. Also,
the AEGMM models were more stable during training. We discuss the possible
reasons in Section 6.3.

• We observe quite low numbers for the test batch performance. That is not
unexpected, as the low contamination rates and the total number of data points
are not in the models’ favor. The best results are shown by the NO_AGGR
CICIDS and AGGR IoT-23 models. However, in these cases, the contamination
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THRESHOLD BATCH

CTU-13 NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 85 0.215 0.640 0.322 90 0.382 0.764 0.509 93 0.514 0.720 0.600
VAE 93 0.257 0.360 0.300 93 0.450 0.630 0.525 95 0.588 0.588 0.588
AEGMM 98 0.726 0.270 0.394 93 0.357 0.500 0.417 90 0.402 0.804 0.536
IF 90 0.250 0.500 0.333 90 0.337 0.674 0.449 90 0.407 0.814 0.543
MAH 97 0.373 0.224 0.280 93 0.400 0.560 0.467 93 0.540 0.756 0.630

CICIDS NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 97 0.28 0.168 0.21 97 0.823 0.494 0.617 95 0.73 0.73 0.73
VAE 97 0.32 0.192 0.24 93 0.543 0.76 0.633 95 0.704 0.704 0.704
AEGMM 80 0.216 0.862 0.345 97 0.824 0.488 0.613 97 0.803 0.482 0.602
IF 50 0.093 0.928 0.169 93 0.413 0.578 0.482 95 0.565 0.564 0.565
MAH 97 0.277 0.166 0.208 97 0.84 0.504 0.63 97 0.807 0.484 0.605

IoT-23 NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 80 0.253 1.000 0.404 95 0.998 0.998 0.998 95 1.000 1.000 1.000
VAE 85 0.279 0.836 0.418 95 1.000 1.000 1.000 95 1.000 1.000 1.000
AEGMM - - - - 95 0.980 0.980 0.980 95 1.000 1.000 1.000
IF 70 0.247 1.000 0.397 90 0.488 0.976 0.651 90 0.501 1.000 0.667
MAH 88 0.337 0.808 0.475 95 0.996 0.996 0.996 95 0.994 0.994 0.994

TEST BATCH

CTU-13 NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 85 0.088 0.263 0.132 90 0.020 0.706 0.038 93 0.012 0.686 0.023
VAE 93 0.018 0.026 0.021 93 0.032 0.677 0.061 95 0.019 0.667 0.036
AEGMM 98 0.002 0.000 0.001 93 0.006 0.192 0.012 90 0.005 0.724 0.011
IF 90 0.027 0.075 0.040 90 0.017 0.692 0.032 90 0.007 0.710 0.013
MAH 97 0.055 0.043 0.048 93 0.007 0.987 0.015 93 0.000 0.997 0.001

CICIDS NO_AGGR AGGR_M AGGR_3M
TH PRE REC F1 TH PRE REC F1 TH PRE REC F1

AE 97 0.886 0.587 0.706 97 0.125 0.156 0.139 95 0.095 0.345 0.149
VAE 97 0.868 0.602 0.711 93 0.064 0.341 0.108 95 0.093 0.368 0.148
AEGMM 80 0.428 0.681 0.526 97 0.079 0.073 0.076 97 0.08 0.142 0.102
IF 50 0.244 0.741 0.367 93 0.045 0.296 0.078 95 0.069 0.393 0.117
MAH 97 0.746 0.225 0.345 97 0.027 0.244 0.048 97 0.035 0.876 0.066

IoT-23 NO_AGGR AGGR_M AGGR_3M
TH PRE* REC* F1* TH PRE REC F1 TH PRE REC F1

AE 80 1.000 0.000 0.001 95 0.564 0.569 0.567 95 0.572 0.571 0.572
VAE 85 0.392 0.272 0.321 95 0.564 0.569 0.566 95 0.571 0.571 0.571
AEGMM - - - - 95 0.583 0.618 0.600 95 0.570 0.565 0.567
IF 70 0.000 0.000 0.000 90 0.569 0.961 0.715 90 0.563 0.995 0.719
MAH 88 0.357 0.555 0.434 95 0.563 0.568 0.566 95 0.445 0.342 0.387

Table 22: Performance on the benchmark data split by scenario (TH: threshold,
PRE: precision, REC: recall, F1: F1-score). Best values highlighted in bold.
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rate is relatively high (around 20%), which contributes to the higher precision
and F1-score values. The precision drops significantly in cases where the
contamination rate is low (CTU-13 and AGGR CICIDS). However, we observe
that the AGGR models achieve high recall values. This is a somewhat promising
result, as the precision can potentially be improved later, e.g., by using a clever
postprocessing procedure or another anomaly detector. As we explained above,
for IoT-23 NO_AGGR we have inverted the definition for the positive class
when computing F1-score (marked with asterisks in the table).

In the next step of our analysis, we examine the performance of the models
per attack scenario. Taking a different approach, we are going to analyze a few
successful and unsuccessful attack detection cases. The complete performance per
attack scenario results are provided in Appendix E.

Figure 20 shows the anomaly instance score plots of some successful attack
detections. For the sake clarity, in a few plots below, we limit the highest anomaly
scores with an upper value, i.e. score = min(true_score, upper_limit). To call an
attack detection attempt successful, we require the model to achieve a high recall (the
majority of the attack data points should be above the threshold) and a reasonable
precision (the majority of the benign points should be below the threshold).

A discussion on the successful cases follows:

• CTU-13. Figure 20a shows the anomaly score plot of the VAE AGGR_M
model on Scenario 9 (Neris). The model achieves good recall, but poor precision,
failing to separate the benign and attack data points. We can also see that
the initial stage of the attack (around 0:41:40), which could be that of a C%C
communication, is not detected.

• CICIDS 2017. Figure 20b shows the anomaly score plot of the VAE AGGR_3M
model on Scenario 8 (DoS). Similar to the case above, the model achieves good
recall, but poor precision.

• IoT-23. Figure 20c shows the anomaly score plot of the VAE AGGR_3M
model on Scenario 5 (Mirai 48). In this case, the model achieves excellent
precision and recall, clearly separating the benign and attack data points.

Figure 21 shows unsuccessful attack detection cases for each dataset. The reasons
for failure are twofold: the models do a poor job at separating benign and attack
data points, and the selected detection threshold does not work well in this particular
case.

A discussion on the unsuccessful cases follows:

• CTU-13. Figure 21a shows the anomaly score plot of the MAH NO_AGGR
model on Scenario 8 (Murlo). We can see that none of the attack data points
get detected with the selected threshold. However, certain attack network flows,
that also are periodic, are assigned a high anomaly score. If the threshold were
selected a little lower (e.g. below 20), those attack data points would have
gotten detected.
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(a) VAE AGGR_M on Scenario 9 (Neris), CTU-13

(b) VAE AGGR_3M on Scenario 8 (DoS), CICIDS 2017

(c) VAE AGGR_3M on Scenario 5 (Mirai 48), IoT-23

Figure 20: Successful detection cases (high recall and precision).
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• CICIDS 2017. Figure 21b shows the anomaly score plot of the AEGMM
AGGR_3T model on Scenario 7 (Brute-Force). Here, the model fails to
separate benign and attack data points.

• IoT-23. Figure 21c shows the anomaly score plot of the VAE AGGR_3T model
on Scenario 8 (Mirai 34). Note that this is the same model as in the successful
example from above. We can see that it manages to separate C&C data points
from the benign data points, but they don’t get flagged using the selected
threshold. Nevertheless, we observe that the DDoS and Horizontal Port Scan
(HPS) data points get detected in this example.

6.2.4 Aggregation of Anomaly Scores

In this section, we showcase aggregating anomaly scores output by the NO_AGGR
models. Our method for aggregating anomaly scores is explained in detail in Section
6.1.3.

Figure 22 shows a successful case of aggregating anomaly scores on the example
of the NO_AGGR AEGMM model evaluated on Scenario 9 (Neris), CTU-13.

• Figure 22a shows the original instance score plot produced by the model. We
can see from the plot that a lot of the true attack data points are missed.

• Figure 22b shows the result of aggregating the anomaly scores using our method.
Here, we can see that we have "cleaned up" the plot, reducing the total number
of data points while keeping the correct detections.

• For comparison, Figure 22c shows the anomaly instance score plot produced
by the AGGR_3M AEGMM model on the same attack scenario. We can
see that this model achieves good recall, but very low precision. Noticeably,
the AGGR_3M AEGMM model correctly selects the beginning of the attack
(around 0:41:40), while the NO_AGGR model misses it.
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(a) MAH NO_AGGR on Scenario 8 (Murlo), CTU-13

(b) AEGMM AGGR_3T on Scenario 7 (Brute-Force), CICIDS 2017

(c) VAE AGGR_3M on Scenario 8 (Mirai 34), IoT-23

Figure 21: Unsuccessful detection cases (low recall and precision).
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(a) AEGMM NO_AGGR on Scenario 9 (Neris), CTU-13

(b) Same as above after aggregating anomaly score over 3M

(c) AEGMM AGGR_3M model on the same scenario for reference

Figure 22: Aggregation of anomaly scores on Scenario 9 (Neris), CTU-13
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6.3 Discussion
In the previous sections, we presented a methodology for proper training, testing,
and comparing anomaly detection models for network intrusion detection. Here we
summarize its main steps and the important findings.

The first step was to create appropriate benchmarks from the original data sources.
We propose two approaches:

• Split-at-random. In this case, we split the data points at random and fix
the contamination rates of the threshold and test batches. The performance
numbers obtained on these benchmarks are not completely realistic, but allow
us to conduct a meaningful comparison of the tested models.
We obtain the value of χ2

F = 18.93 for the Friedman statistic, which is higher
than the critical value; thus, we reject the hypothesis that the models perform
equally well. Figure 23 shows the obtained critical diagram, from which we
can see that that VAE and AE generally outperform other models.

Figure 23: Critical difference diagram for the split-at-random benchmarks

• Split-by-scenario In this case, we split the data by attack scenario and keep
the contamination rate of the test batch. These benchmarks are closer to a
real-world environment, and allow us to test the algorithms on unseen attacks.
The statistical tests give us similar results as in the previous case (see Figure
24). However, we observe that the models achieve very low precision; in other
words, they produce a lot of false alarms.

Figure 24: Critical difference diagram for the split-by-scenario benchmarks

We have also observed that our method for aggregating network flows provides
a noticeable improvement in performance in many scenarios. The three-minute



71

aggregation window seems to perform better than the one-minute one, but the
difference is not significant. We hypothesize that the optimal aggregation width
can be found based on certain characteristics of the network traffic. We leave this
question for future research.

We analyze the performance of the models for detecting different types of attacks.
From the results on the split-at-random benchmarks, we observe that most of the
attacks from all three datasets have good or moderate detectability. However, we
find that the best performing models are different in each case, and none of the
models excels at detecting every attack scenario.

From the results on the split-by-scenario benchmarks, we identify two reasons
why a model that performs relatively well overall can have poor performance on
certain attack scenarios. Firstly, we find that it may fail to separate the benign and
attack data points efficiently in those attack scenarios. Secondly, we observe that
even if the model separates well the benign and attack traffic, the selected threshold
may not be optimal.

We propose a method for aggregating anomaly scores for NO_AGGR models,
which shares a similar concept to network flow aggregation. We find that this method
shows promising results on some attack scenarios, producing better scores than the
corresponding AGGR models. We note that aggregated anomaly scores produced by a
NO_AGGR models can easily be combined with the scores produced by NO_AGGR
and AGGR models.

Lastly, we make a few observations on training the deep learning models and
hyperparameter selection. From our experience, AE and VAE are quite straight-
forward to train, unlike AEGMM. We have encountered many numerical errors
during AEGMM optimization and found that the outcome was inconsistent. We
believe these issues might be caused by the following: certain properties of the data,
implementation issues, or not optimal hyperparameter settings. Unfortunately, we
have not been able to establish the root cause. Nevertheless, AEGMM seems to
have good potential based on the successful cases, and it’s suitability for network
intrusion detection requires further investigation.

Another observation is that the deep learning models seem to obtain better
threshold batch performance results on the split-by-scenario benchmarks, as compared
to the split-at-random benchmarks. After conducting an ablation study, we find
that this is caused by the way the data points are batched. In the split-by-scenario
case, the data points are split into batches first, and then the batches are shuffled.
Therefore, the batches contain contiguous bits of network traffic data (as the data
points were sorted by timestamp initially). On the other hand, in the split-at-random
case, the data points are shuffled first and then batched. We conclude that having
“contiguous” batches is beneficial for optimization.

We have tried many different combinations of hyperparameters for each model
(see Appendix C). Of course, we cannot guarantee that the selected settings are
optimal, as there exists an infinite number of possible options, but we believe that
they are adequate. However, it should be mentioned that we have not been to identify
any trends in selecting hyperparameter values.
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7 Conclusions
In this section, we give answers to the stated research questions based on the
experimental findings. Next, we discuss the impact of the conducted research and
provide recommendations. Finally, we identify the limitations of our study and
propose questions for future research.

7.1 Answers to Research Questions
In this thesis, a selection of deep learning-based autoencoding models for anomaly
detection, AE, VAE and AEGMM were compared against classical methods of IF
and MAH. The comparison was conducted in a systematic way on three modern
network intrusion datasets.

From the conducted experiments, we reject the hypothesis that the models
perform equally well for network intrusion detection. We have shown that VAE and
AE are robust and consistently outperform the IF and MAH. AEGMM performs
inconsistently, and it is difficult to train. Our conclusion is that the deep-learning
models show good potential for network intrusion detection and should be studied in
more depth.

The second aim of this study was to investigate if network flow aggregation
improves the performance. We have shown that it does, indeed, in most cases. It
should be noted that other researches also support this claim [7, 17]. That said,
we also have found that in a few scenarios (see Section 6.2.2 and Appendix D),
the models trained on network flow features outperform the models trained on the
aggregated features.

The third aim of this study was to analyze the performance of the methods on
different types of attacks. We have found that the majority of the attacks has good
or moderate detectability. Interestingly, we have observed that the best-performing
methods are different for each attack. This may be interpreted in two ways: (1)
different attack types exhibit certain characteristics that make them suitable for the
application of a particular method; (2) the models “get lucky” during the optimization
for detecting particular types of attacks.

Furthermore, we have found that one of the main challenges is the selection
of an optimal threshold: although our method usually achieves a reasonably good
performance on average, it may fail to detect certain attacks (see Section 6.2.3 and
Appendix E). We conclude that a single anomaly threshold does not scale well to
large datasets that contain heterogenous network traffic patterns.

Lastly, the results show that the methods produce a prohibitively large number
of false alarms. Therefore, they cannot be employed as is in a real-world network,
as it is not possible to go through all the alerts manually. That said, we observe
the highest precision values on the network traffic from IoT devices. Therefore, we
conclude that protecting IoT networks is one of the most promising application areas
for our methods.
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7.2 Recommendations
Computational complexity and reliability are as important in real-world environments
as performance. We would recommend using AE and VAE as they showed to be
the best-performing models within our experiments, and furthermore, they are
straightforward to optimize, robust and allow for fast inference.

The study has identified that even the best performing methods tend to produce
a large number of false alarms. Therefore, something must be done to improve the
precision of the models. We can think of the following approaches:

• Ensemble several models to obtain better prediction performance.

• Cluster the traffic into more homogeneous groups and train a separate model
for each group.

• Optimize the threshold selection process, considering making it adaptive for
each network device or group.

7.3 Limitations
A large number of conducted experiments makes it difficult to validate all the findings
and examine individual cases in greater depth. Furthermore, we have not been in
close contact with the authors of the datasets, and thus, relied on the provided data
and documentation. Consequently, it is possible that there are some mistakes in the
results due to our misinterpretations, insufficient amount of data, and software and
data bugs.

Secondly, due to the restrictions on computational resources and time, we have not
been able to conduct enough experiments to ensure that the results are statistically
accurate. We observe a lot of variance in the results which could affect some of the
conclusions.

For the same reason, we have also not been able to explore the hyperparameter
space in sufficient depth. While we believe that the selected settings are adequate,
we cannot guarantee that they are optimal.

7.4 Future Research
Interesting potential directions for future research include:

• Evaluating other deep leaning-based algorithms, such as CNN- and RNN-based
AEs, and adversarial AE.

• Studying the feature importance, for example using the methods described in
[64].

• Investigating the performance of the deep learning models in the fully unsuper-
vised mode.

• Finding better ways for threshold selection. For example, by selecting a separate
threshold for each device based on its network profile.
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A Network flow and Aggregated Features
This section presents the features used for training the models. For each dataset, we
specify both the network flow features and the aggregated features.

We use the following abbreviations for feature types: num = numerical, cat =
categorical, bin = binary. We standardize the numerical features by removing the
mean and scaling to unit variance (standard scaling). We encode the categorical
features using OHE. We encode the binary features with a single binary column.

# Feature Type Description
1 proto cat Flow protocol
2 dur num Flow total duration
3 fwd_dir bin Data sent in forward direction
4 bwd_dir bin Data sent in backward direction
5 fwd_fin_flag bin TCP sent ACK flag
6 fwd_syn_flag bin TCP sent SYN flag
7 fwd_rst_flag bin TCP sent RST flag
8 fwd_psh_flag bin TCP sent PSH flag
9 fwd_ack_flag bin TCP sent ACK flag
10 fwd_urg_flag bin TCP sent UGR flag
11 fwd_cwe_flag bin TCP sent CWE flag
12 fwd_ece_flag bin TCP sent ECE flag
13 bwd_fin_flag bin TCP received ECE flag
14 bwd_syn_flag bin TCP received SYN flag
15 bwd_rst_flag bin TCP received RST flag
16 bwd_psh_flag bin TCP received PSH flag
17 bwd_ack_flag bin TCP received ACK flag
18 bwd_urg_flag bin TCP received URG flag
19 bwd_cwe_flag bin TCP received CWE flag
20 bwd_ece_flag bin TCP received ECE flag
21 src_tos bin Source Type of Service (TOS) is non-zero
22 dst_tos bin Dest. Type of Service (TOS) is non-zero
23 tot_pkts num Total num. of pkts. exchanged
24 tot_byts num Total num. of bytes exchanged
25 src_byts num Num. of bytes sent by the source

Table A1: CTU-13 network flow features
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# Feature Type Description
1 total_cnt num Total num. of flows in a window
2 dur_mean num Mean flow duration
3 dur_min num Min. flow duration
4 dur_max num Max. flow duration
5 dur_std num SD of flow duration
6 dst_ip_entropy num Entropy of destination IPs
7 dst_ip_nuniq num Num. of unique destination IPs
8 dst_port_entropy num Entropy of destination IPs
9 dst_port_nuniq num Num. of unique destination IPs
10 src_port_entropy num Entropy of source IPs
11 src_port_nuniq num Num. of unique source IPs
12 proto_entropy num Entropy of protocols
13 proto_nuniq num Num. of unique protocols
14 fwd_flag_entropy num Entropy of sent TCP flags
15 fwd_flag_nuniq num Num. of unique sent TCP flags
16 bwd_flag_entropy num Entropy of received TCP flags
17 bwd_flag_nuniq num Num. of unique received TCP flags
18 tot_pkts_mean num Mean total num. of pkts.
19 tot_pkts_min num Min. total num. of pkts.
20 tot_pkts_max num Max. total num. of pkts.
21 tot_pkts_std num SD of total num. of pkts.
22 tot_pkts_median num Median total num. of pkts.
23 tot_byts_mean num Mean total num. or bytes
24 tot_byts_min num Min. total num. or bytes
25 tot_byts_max num Max. total num. or bytes
26 tot_byts_std num SD of total numbenumr bytes
27 tot_byts_median num Median of total num. or bytes
28 src_byts_mean num Mean num. of bytes sent by the source
29 src_byts_min num Min. num. of bytes sent by the source
30 src_byts_max num Max. num. of bytes sent by the source
31 src_byts_std num SD of num. of bytes sent by the source
32 src_byts_median num Median num. of bytes sent by the source

Table A2: CTU-13 aggregated features
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# Feature Type Description
1 protocol cat Flow protocol
2 dur num Flow duration
3 tot_fwd_pkt num Total num. of pkts. in fwd. dir.
4 tot_bwd_pkts num Total num. of pkts. in bwd. dir.
5 tot_len_fwd_pkts num Total size of pkts. in fwd. dir.
6 tot_len_bwd_pkts num Total size of pkts. in bwd. dir.
7 fwd_pkt_len_max num Max. packet size in fwd. dir.
8 fwd_pkt_len_min num Min. packet size in fwd. dir.
9 fwd_pkt_len_mean num Min. packet size in fwd. dir.
10 fwd_pkt_len_std num SD of packet size in fwd. dir.
11 bwd_pkt_len_max num Max. packet size in bwd. dir.
12 bwd_pkt_len_min num Min. packet size in bwd. dir.
13 bwd_pkt_len_mean num Mean packet size in bwd. dir.
14 bwd_pkt_len_std num SD of packet size in bwd. dir.
15 flow_byts/s num Num. of flow bytes per sec.
16 flow_pkts/s num Num. of packet bytes per sec.
17 flow_iat_mean num Mean time btw. two pkts.
18 flow_iat_std num SD of time btw. two pkts.
19 flow_iat_max num Max. time btw. two pkts.
20 flow_iat_min num Min. time btw. two pkts.
21 fwd_iat_tot num Total time btw. two pkts. in fwd. dir.
22 fwd_iat_mean num Mean time btw. two pkts. in fwd. dir.
23 fwd_iat_std num SD of time btw. two pkts. in fwd. dir.
24 fwd_iat_max num Max. time btw. two pkts. in fwd. dir.
25 fwd_iat_min num Min. time btw. two pkts. in fwd. dir.
26 bwd_iat_tot num Total time btw. two pkts. in bwd. dir.
27 bwd_iat_mean num Mean time btw. two pkts. in bwd. dir.
28 bwd_iat_std num SD of time btw. two pkts. in bwd. dir.
29 bwd_iat_max num Max. time btw. two pkts. in bwd. dir.
30 bwd_iat_min num Min. time btw. two pkts. in bwd. dir.
31 fwd_psh_flags num Num. of PSH flags in fwd. dir. (TCP)
32 bwd_psh_flags num Num. of PSH flags in bwd. dir. (TCP)
33 fwd_urg_flags num Num. of UGR flags in fwd. dir. (TCP)
34 bwd_urg_flags num Num. of UGR flags in bwd. dir. (TCP)
35 fwd_header_len num Total bytes used for headers in fwd. dir.
36 bwd_header_len num Total bytes used for headers in bwd. dir.
37 fwd_pkts/s num Num. of fwd. pkts. per sec.
38 bwd_pkts/s num Num. of bwd. pkts. per sec.
39 pkt_len_min num Min. packet size
40 pkt_len_max num Max. packet size
41 pkt_len_mean num Mean packet size

CICIDS 2017 network flow features
Continued on next page
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42 pkt_len_std num SD of packet size
43 pkt_len_var num Variance of packet size
44 fin_flag_cnt num Num. of pkts. with FIN flag
45 syn_flag_cnt num Num. of pkts. with SYN flag
46 rst_flag_cnt num Num. of pkts. with RST flag
47 psh_flag_cnt num Num. of pkts. with PSH flag
48 ack_flag_cnt num Num. of pkts. with ACK flag
49 urg_flag_cnt num Num. of pkts. with URG flag
50 cwe_flag_cnt num Num. of pkts. with CWE flag
51 ece_flag_cnt num Num. of pkts. with ECE flag
52 down/up_ratio num Download and upload ratio
53 fwd_seg_size_avg num Avg. size observed in fwd. dir.
54 bwd_seg_size_avg num Avg. size observed in bwd. dir.
55 fwd_byts/blk_avg num Avg. num. of bytes bulk rate in fwd. dir.
56 fwd_pkts/blk_avg num Avg. num. of pkts. bulk rate in fwd. dir.
57 fwd_blk_rate_avg num Avg. num. bulk rate in fwd. dir.
58 bwd_byts/blk_avg num Avg. num. of bytes bulk rate in bwd. dir.
59 bwd_pkts/blk_avg num Avg. num. of pkts. bulk rate in bwd. dir.
60 bwd_blk_rate_avg num Avg. bulk rate in the bwd. dir.
61 subflow_fwd_pkts num Avg. num. of pkts. in a subflow in fwd.

dir.
62 subflow_fwd_byts num Avg. num. of bytes in a subflow in fwd.

dir.
63 subflow_bwd_pkts num Avg. num. of pkts. in a subflow in bwd.

dir.
64 subflow_bwd_byts num Avg. num. of bytes in a subflow in bwd.

dir.
65 init_fwd_win_byts num Num. of bytes sent in initial window in

fwd. dir.
66 init_bwd_win_byts num Num. of bytes sent in initial window in

bwd. dir.
67 fwd_act_data_pkts num Count of pkts. with at least 1 byte of TCP

data payload in the fwd. dir.
68 fwd_seg_size_min num Min. segment size observed in fwd. dir.
69 active_mean num Mean time flow was active before idle
70 active_std num SD of time flow was active before idle
71 active_max num Max. time flow was active before idle
72 active_min num Min. time flow was active before idle
73 idle_mean num Mean time flow was idle before active
74 idle_std num SD of time flow was idle before active
75 idle_max num Max. time flow was idle before active
76 idle_min num Mix. time flow was idle before active

Table A3: CICIDS 2017 network flow features, adapted from [65]
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# Feature Type Description
1 total_cnt num Total num. of flows in a window
2 dur_mean num Mean flow duration
3 dur_min num Min. flow duration
4 dur_max num Max. flow duration
5 dur_std num SD of flow duration
6 dst_ip_entropy num Entropy of destination IPs
7 dst_ip_nuniq num Num. of unique destination IPs
8 dst_port_entropy num Entropy of destination IPs
9 dst_port_nuniq num Num. of unique destination IPs
10 src_port_entropy num Entropy of source IPs
11 src_port_nuniq num Num. of unique source IPs
12 proto_entropy num Entropy of protocols
13 proto_nuniq num Num. of unique protocols
14 flag_entropy num Entropy of exchanged TCP flags
15 flag_nuniq num Num. of unique exchanged TCP flags
16 tot_fwd_pkts_mean num Mean total num. of pkts. in fwd. dir.
17 tot_fwd_pkts_min num Min. total num. of pkts. in fwd. dir.
18 tot_fwd_pkts_max num Max. total num. of pkts. in fwd. dir.
19 tot_fwd_pkts_std num SD of total num. of pkts. in fwd. dir.
20 tot_fwd_pkts_median num Median total num. of pkts. in fwd. dir.
21 tot_bwd_pkts_mean num Mean total num. of pkts. in bwd. dir.
22 tot_bwd_pkts_min num Min. total num. of pkts. in bwd. dir.
23 tot_bwd_pkts_max num Max. total num. of pkts. in bwd. dir.
24 tot_bwd_pkts_std num SD of total num. of pkts. in bwd. dir.
25 tot_bwd_pkts_median num Median total num. of pkts. in bwd. dir.
26 tot_len_fwd_pkts_mean num Mean size of pkts. in fwd. dir.
27 tot_len_fwd_pkts_min num Min. size of pkts. in fwd. dir.
28 tot_len_fwd_pkts_max num Max. size of pkts. in fwd. dir.
29 tot_len_fwd_pkts_std num SD of size of pkts. in fwd. dir.
30 tot_len_fwd_pkts_median num Median size of pkts. in fwd. dir.
31 tot_len_bwd_pkts_mean num Mean size of pkts. in bwd. dir.
32 tot_len_bwd_pkts_min num Min. size of pkts. in bwd. dir.
33 tot_len_bwd_pkts_max num Max. size of pkts. in bwd. dir.
34 tot_len_bwd_pkts_std num SD of size of pkts. in bwd. dir.
35 tot_len_bwd_pkts_median num Median size of pkts. in bwd. dir.
36 flow_byts/s_mean num Mean num. of flow bytes per sec.
37 flow_byts/s_min num Min. num. of flow bytes per sec.
38 flow_byts/s_max num Max. num. of flow bytes per sec.
39 flow_byts/s_std num SD of num. of flow bytes per sec.

CICIDS 2017 aggregated features
Continued on next page
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40 flow_byts/s_median num Median num. of flow bytes per sec.
41 flow_pkts/s_mean num Mean num. of flow pkts. per sec.
42 flow_pkts/s_min num Min. num. of flow pkts. per sec.
43 flow_pkts/s_max num Max. num. of flow pkts. per sec.
44 flow_pkts/s_std num SD of num. of flow pkts. per sec.
45 flow_pkts/s_median num Median num. of flow pkts. per sec.

Table A4: CICIDS 2017 aggregated features

# Feature Type Description
1 proto cat Transport level protocol
2 service cat Dynamically detected application pro-

tocol, if any
3 dur num Flow total duration
4 orig_bytes num Originator payload bytes
5 resp_bytes num Responder payload bytes
6 conn_state cat Connection state
7 missed_bytes num Num. of missing bytes
8 history_empty bin History is empty
9 history_dir_flipped bin Connection direction was flipped by flow

exporter
10-21 orig_history_[l]_cnt num Count of each originator history letter l
22-33 resp_history_[l]_cnt num Count of each responder history letter l
34 orig_pkts num Num. of originator packets
35 orig_ip_bytes num Num. of originator IP bytes
36 resp_pkts num Num. of responder packets
37 resp_ip_bytes num Num. of responder IP bytes

Table A5: IoT-23 network flow features, adapted from [66]

# Feature Type Description
1 total_cnt num Total num. of flows in a window
2 dur_mean num Mean flow duration
3 dur_min num Min. flow duration
4 dur_max num Max. flow duration
5 dur_std num SD of flow duration
6 dur_median num Median flow duration

IoT-23 aggregated features
Continued on next page
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7 dst_ip_entropy num Entropy of destination IPs
8 dst_ip_nuniq num Num. of unique destination IPs
9 dst_port_entropy num Entropy of destination ports
10 dst_port_nuniq num Num. of unique destination ports
11 src_port_entropy num Entropy of source ports
12 src_port_nuniq num Num. of unique source ports
13 proto_entropy num Entropy of transport protocols
14 proto_nuniq num Num. of unique transport protocols
15 service_entropy num Entropy of detected application protocols
16 service_nuniq num Num. of unique detected application pro-

tocols
17 orig_hist_entropy num Entropy of originator history letters
18 orig_hist_nuniq num Num. of unique originator history letters
19 resp_hist_entropy num Entropy of responder history letters
20 resp_hist_nuniq num Num. of unique responder history letters
21 orig_bytes_mean num Mean originator payload bytes
22 orig_bytes_min num Min. originator payload bytes
23 orig_bytes_max num Max. originator payload bytes
24 orig_bytes_std num SD of originator payload bytes
25 orig_bytes_median num Median originator payload bytes
26 resp_bytes_mean num Mean responder payload bytes
27 resp_bytes_min num Min. responder payload bytes
28 resp_bytes_max num Max. responder payload bytes
29 resp_bytes_std num SD of responder payload bytes
30 resp_bytes_median num Median responder payload bytes
31 conn_state_entropy num Entropy of connection states
32 conn_state_nuniq num Num. of unique connection states
33 missed_bytes_mean num Mean missing bytes
34 missed_bytes_min num Min. missing bytes
35 missed_bytes_max num Max. missing bytes
36 missed_bytes_std num SD of missing bytes
37 missed_bytes_median num Median missing bytes
38 orig_pkts_mean num Mean originator packets
39 orig_pkts_min num Min. originator packets
40 orig_pkts_max num Max. originator packets
41 orig_pkts_std num SD of originator packets
42 orig_pkts_median num Median originator packets
43 orig_ip_bytes_mean num Mean originator IP bytes
44 orig_ip_bytes_min num Min. originator IP bytes
45 orig_ip_bytes_max num Max. originator IP bytes
46 orig_ip_bytes_std num SD of originator IP bytes
47 orig_ip_bytes_median num Median originator IP bytes
48 resp_pkts_mean num Mean responder packets

IoT-23 aggregated features
Continued on next page
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49 resp_pkts_min num Min. responder packets
50 resp_pkts_max num Max. responder packets
51 resp_pkts_std num SD of responder packets
52 resp_pkts_median num Median responder packets
53 resp_ip_bytes_mean num Mean responder IP bytes
54 resp_ip_bytes_min num Min. responder IP bytes
55 resp_ip_bytes_max num Max. responder IP bytes
56 resp_ip_bytes_std num SD of responder IP bytes
57 resp_ip_bytes_median num Median responder IP bytes

Table A6: IoT-23 aggregated features
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B Attack Scenarios
This section explores the attack scenarios for each dataset, as identified in Section
5. For each attack scenario, we give the number of benign and attack data points
(contamination rate is specified in parenthesis) and plot the number of data points
per minute. We provide the information for two versions of the data: network flows
(NO_AGGR) and aggregations of flows over a three-minute window (AGGR_3M).

CTU-13

1 Neris
NO_AGGR AGGR_3M

# Benign: 2783648 # Benign: 1102475
# Attack: 40961 (1.45%) # Attack: 96 (0.01%)

2 Neris
NO_AGGR AGGR_3M

# Benign: 1787163 # Benign: 709963
# Attack: 20941 (1.16%) # Attack: 70 (0.01%)

CTU-13 attack scenarios
Continued on next page
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3 Rbot
NO_AGGR AGGR_3M

# Benign: 4683587 # Benign: 966874
# Attack: 26822 (0.57%) # Attack: 362 (0.04%)

4 Rbot
NO_AGGR AGGR_3M

# Benign: 1118482 # Benign: 228898
# Attack: 2580 (0.23%) # Attack: 43 (0.02%)

5 Virut
NO_AGGR AGGR_3M

# Benign: 128929 # Benign: 32128
# Attack: 901 (0.69%) # Attack: 8 (0.02%)

CTU-13 attack scenarios
Continued on next page
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6 Menti
NO_AGGR AGGR_3M

# Benign: 554281 # Benign: 108412
# Attack: 4630 (0.83%) # Attack: 42 (0.04%)

7 Sogou
NO_AGGR AGGR_3M

# Benign: 114011 # Benign: 25800
# Attack: 63 (0.06%) #Attack: 4 (0.02%)

8 Murlo
NO_AGGR AGGR_3M

# Benign: 2948040 # Benign: 805205
# Attack: 6127 (0.21%) # Attack: 376 (0.05%)

CTU-13 attack scenarios
Continued on next page
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9 Neris
NO_AGGR AGGR_3M

# Benign: 1902500 # Benign: 574339
# Attack: 184987 (8.86%) # Attack: 504 (0.09%)

10 Rbot
NO_AGGR AGGR_3M

# Benign: 1203423 # Benign: 271622
# Attack: 106352 (8.12%) # Attack: 234 (0.09%)

11 Rbot
NO_AGGR AGGR_3M

# Benign: 99081 # Benign: 31853
# Attack: 8164 (7.61%) # Attack: 8 (0.03%)

CTU-13 attack scenarios
Continued on next page
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12 NSIS.ay
NO_AGGR AGGR_3M

# Benign: 323298 # Benign: 76484
# Attack: 2168 (0.67%) # Attack: 66 (0.09%)

13 Virut
NO_AGGR AGGR_3M

# Benign: 1885094 # Benign: 633803
# Attack: 40003 (2.08%) # Attack: 327 (0.05%)

Table B1: Overview of CTU-13 attack scenarios
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CICIDS 2017

1 Benign
NO_AGGR AGGR_3M

# Benign: 529918 # Benign: 35017
# Attack: 0 (0.00%) # Attack: 0 (0.00%)

2 DDoS
NO_AGGR AGGR_3M

# Benign: 97718 # Benign: 4451
# Attack: 128027 (56.71%) # Attack: 9 (0.20%)

3 Port Scan
NO_AGGR AGGR_3M

# Benign: 127537 # Benign: 9158
# Attack: 158930 (55.48%) # Attack: 15 (0.16%)

CICIDS 2017 attack scenarios
Continued on next page
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4 Botnet
NO_AGGR AGGR_3M

# Benign: 189067 # Benign: 12802
# Attack: 1966 (1.03%) # Attack: 291 (2.22%)

5 Infiltration
NO_AGGR AGGR_3M

# Benign: 288565 # Benign: 15622
# Attack: 36 (0.01%) # Attack: 22 (0.14%)

6 Web
NO_AGGR AGGR_3M

# Benign: 168186 # Benign: 12159
# Attack: 2180 (1.28%) # Attack: 25 (0.21%)

CICIDS 2017 attack scenarios
Continued on next page
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7 Brute-force
NO_AGGR AGGR_3M

# Benign: 432074 # Benign: 28660
# Attack: 13835 (3.10%) # Attack: 44 (0.15%)

8 DoS
NO_AGGR AGGR_3M

# Benign: 440031 # Benign: 29413
# Attack: 252672 (36.48%) # Attack: 37 (0.13%)

Table B2: Overview of CICIDS 2017 attack scenarios
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IoT-23

1 Benign (7)
NO_AGGR AGGR_3M

# benign: 130 # benign: 62
# attack: 0 (0.00%) # attack: 0 (0.00%)

2 Benign (4)
NO_AGGR AGGR_3M

# benign: 452 # benign: 171
# attack: 0 (0.00%) # attack: 0 (0.00%)

3 Benign (5)
NO_AGGR AGGR_3M

# benign: 1374 # benign: 340
# attack: 0 (0.00%) # attack: 0 (0.00%)

IoT-23 attack scenarios
Continued on next page
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4 Mirai (1)
NO_AGGR AGGR_3M

# benign: 469275 # benign: 17419
# attack: 539473 (53.48%) # attack: 2239 (11.39%)

- # HPS: 539465 (53.48%) - # HPS: 2231 (11.35%)
- # C&C: 8 (0.00%) - # C&C: 8 (0.04%)

5 Mirai (48)
NO_AGGR AGGR_3M

# benign: 3734 # benign: 2335
# attack: 3390604 (99.89%) # attack: 196 (7.74%)

- # HPS: 3387007 (99.78%) - # HPS: 20 (0.79%)
- # Attack: 2752 (0.08%) - # Attack: 144 (5.69%)
- # C&C: 845 (0.02%) - # C&C: 32 (1.26%)

IoT-23 attack scenarios
Continued on next page
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6 Mirai (52)
NO_AGGR AGGR_3M

# benign: 405 # benign: 302
# attack: 4999595 (99.99%) # attack: 75 (19.89%)

- # HPS: 4999576 (99.99%) - # HPS: 74 (19.63%)
- # C&C: 19 (0.00%) - # C&C: 1 (0.27%)

7 Mirai (44)
NO_AGGR AGGR_3M

# benign: 211 # benign: 38
# attack: 26 (10.97%) # attack: 3 (7.32%)

- # DDoS: 1 (0.42%) - # DDoS: 1 (2.44%)
- # C&C: 25 (10.55%) - # C&C: 2 (4.88%)

IoT-23 attack scenarios
Continued on next page
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8 Mirai (34)
NO_AGGR AGGR_3M

# benign: 1923 # benign: 212
# attack: 21222 (91.69%) # attack: 261 (55.18%)

- # HPS: 122 (0.53%) - # HPS: 2 (0.42%)
- # DDoS: 14394 (62.19%) - # DDoS: 1 (0.21%)
- # C&C: 6706 (28.97%) - # C&C: 258 (54.55%)

9 Mirai (49)
NO_AGGR AGGR_3M

# benign: 3433 # benign: 1528
# attack: 4996567 (99.93%) # attack: 138 (8.28%)

- # HPS: 4994775 (99.90%) - # HPS: 1 (0.06%)
- # C&C: 1778 (0.04%) - # C&C: 136 (8.16%)
- # FDL: 14 (0.00%) - # FDL: 2 (0.12%)

IoT-23 attack scenarios
Continued on next page
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10 Mirai (35)
NO_AGGR AGGR_3M

# benign: 4662273 # benign: 1190
# attack: 337727 (6.75%) # attack: 14 (1.16%)

- # Attack: 3 (0.00%) - # Attack: 2 (0.17%)
- # DDoS: 337632 (6.75%) - # DDoS: 1 (0.08%)
- # C&C: 92 (0.00%) - # C&C: 11 (0.91%)

Table B3: Overview of IoT-23 attack scenarios
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C Selected Hyperparameters
This section presents the selected hyperparameter settings for the models. We
perform hyperparameter selection separately for split-at-random and split-by-scenario
benchmarks.

RANDOM SPLIT

Model Parameter CTU-13
NO_AGGR AGGR_M AGGR_3M

AE
encoder_net 15-5 20-10-10-5 20-10-5
encoding_dim 3 3 3
batch_size 1024 1024 64

VAE
encoder_net 15-5 20-10-10-5 20-10-5
latent_dim 2 2 5
batch_size 1024 1024 64

AEGMM
encoder_net 15-5 15-5 -
encoding_dim 1 1 -
n_gmm 2 4 -
batch_size 2048 2048 -

IF num_estimators 200 50 50

MAH num_components 4 2 2

SCENARIO SPLIT

MODEL Parameter CTU-13
NO_AGGR AGGR_M AGGR_3M

AE
encoder_net 20-10-5 20-10-10-5 15-5
encoding_dim 3 3 3
batch_size 64 64 1024

VAE
encoder_net 20-10-10-5 20-10-5 15-5
latent_dim 1 1 2
batch_size 1024 1024 1024

AEGMM
encoder_net 20-10-10-5 20-10-5 15-5
encoding_dim 1 1 1
n_gmm 2 4 4
batch_size 2048 2048 2048

IF num_estimators 200 100 50

MAH num_components 4 2 2

Table C1: Selected hyperparameters CTU-13
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RANDOM SPLIT

Model Parameter CICIDS 2017
NO_AGGR AGGR_M AGGR_3M

AE
encoder_net 60-30-10 60-30-10 60-30-10
encoding_dim 3 3 3
batch_size 1024 64 64

VAE
encoder_net 60-30-10 60-30-10 60-30-10
latent_dim 5 2 1
batch_size 64 64 1024

AEGMM
encoder_net 50-10 50-10 60-30-10
encoding_dim 1 1 1
n_gmm 2 4 4
batch_size 2048 2048 2048

IF num_estimators 100 200 100

MAH num_components 2 8 4

SCENARIO SPLIT

Model Parameter CICIDS 2017
NO_AGGR AGGR_M AGGR_3M

AE
encoder_net 50-10 60-30-10 60-30-10
encoding_dim 3 3 3
batch_size 1024 64 64

VAE
encoder_net 50-10 60-30-10 60-30-10
latent_dim 5 5 2
batch_size 64 64 64

AEGMM
encoder_net 60-30-10 60-30-10 60-30-10
encoding_dim 1 1 1
n_gmm 2 2 4
batch_size 2048 2048 2048

IF num_estimators 100 200 50

MAH num_components 2 4 4

Table C2: Selected hyperparameters CICIDS 2017
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RANDOM SPLIT

Model Parameter IoT-23
NO_AGGR AGGR_M AGGR_3M

AE
encoder_net 50-10 50-10 50-10
encoding_dim 3 3 3
batch_size 1024 1024 64

VAE
encoder_net 60-30-10 60-30-10 50-10
latent_dim 1 1 1
batch_size 64 64 64

AEGMM
encoder_net - 50-10 50-10
encoding_dim - 1 1
n_gmm - 2 2
batch_size - 2048 2048

IF num_estimators 100 100 200

MAH num_components 4 4 8

SCENARIO SPLIT

Model Parameter IoT-23
NO_AGGR AGGR_M AGGR_3M

AE
encoder_net 60-30-10 50-10 50-10
encoding_dim 3 3 3
batch_size 1024 64 64

VAE
encoder_net 50-10 60-30-10 50-10
latent_dim 1 1 1
batch_size 1024 64 64

AEGMM
encoder_net - 60-30-10 50-10
encoding_dim - 1 1
n_gmm - 4 4
batch_size - 2048 2048

IF num_estimators 100 50 100

MAH num_components 8 4 4

Table C3: Selected hyperparameters IoT-23
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D Performance per Scenario on Split-at-Random
Benchmarks

This section presents the performance-per-scenario results obtained on the split-at-
random benchmark. First, we select the models that achieve the highest overall
F1-score (one for every possible combination of { AE, VAE, AEGMM, IF, MAH }
and { NO_AGGR, AGGR_M, AGGR_3M }). For each selected model, we evaluate
its performance at detecting various attack scenarios.

Id Name Aggr. Model
AE VAE AEGMM IF MAH

1 Neris
NO 0.1837 0.2146 0.1464 0.1342 0.1307
1M 0.842 0.8929 0.5042 0.7217 0.6719
3M 0.902 0.9073 - 0.8288 0.933

2 Neris
NO 0.6336 0.5995 0.0945 0.4922 0.3373
1M 0.8841 0.9217 0.4678 0.8007 0.7534
3M 0.9252 0.9198 - 0.8718 0.9386

3 Rbot
NO 0.2924 0.3435 0.0044 0.2345 0.2827
1M 0.5821 0.7329 0.5738 0.4375 0.2417
3M 0.6478 0.6644 - 0.4983 0.6904

4 Rbot
NO 0.659 0.686 0.2338 0.4992 0.6488
1M 0.5674 0.569 0.6097 0.6092 0.4458
3M 0.5123 0.4776 - 0.6555 0.3807

5 Virut
NO 0.6326 0.4171 0.5397 0.7628 0.6352
1M 0.9242 0.8545 0.3847 0.9744 0.9562
3M 0.9149 0.9144 - 0.9891 0.9828

6 Menti
NO 0.8877 0.8974 0.0371 0.756 0.8156
1M 0.9315 0.9513 0.8124 0.882 0.9103
3M 0.9671 0.9655 - 0.9326 0.95

7 Sogou
NO 0.6005 0.6032 0.732 0.6788 0.0725
1M 0.3266 0.0 0.32 0.7272 0.6642
3M 0.0 0.0 - 0.499 0.5037

8 Murlo
NO 0.5119 0.5494 0.0563 0.359 0.362
1M 0.1885 0.2063 0.1389 0.1707 0.1786
3M 0.2859 0.3007 - 0.2353 0.323

9 Neris
NO 0.3291 0.3214 0.1473 0.2399 0.1993
1M 0.849 0.8607 0.3569 0.7472 0.7889
3M 0.8714 0.8831 - 0.8189 0.9035

10 Rbot
NO 0.7305 0.7575 0.3677 0.5678 0.6524
1M 0.6943 0.6732 0.6757 0.6583 0.2476
3M 0.675 0.6486 - 0.7013 0.2034

11 Rbot
NO 0.9667 0.9706 0.8793 0.9463 0.9672
1M 0.608 0.6123 0.6024 0.9194 0.603
3M 0.5997 0.5995 - 0.7185 0.444

12 NSIS.ay
NO 0.0633 0.0615 0.6418 0.2645 0.4784
1M 0.552 0.5156 0.5452 0.607 0.2997
3M 0.5504 0.5501 - 0.3187 0.2428

13 Virut
NO 0.5733 0.3614 0.0654 0.4435 0.4225
1M 0.796 0.4063 0.3185 0.5942 0.4462
3M 0.8554 0.8842 - 0.7377 0.7061

Table D1: Test F1-score per scenario CTU-13
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Id Name Aggr. Model
AE VAE AEGMM IF MAH

2 DDoS
NO 0.5345 0.5798 0.5978 0.2248 0.5981
1M 0.988 0.9617 0.9872 0.9173 0.9688
3M 0.9589 0.978 0.9227 0.934 0.9264

3 Port Scan
NO 0.0005 0.0045 0.1469 0.0003 0.0014
1M 0.6533 0.6511 0.5815 0.5204 0.6581
3M 0.4319 0.4498 0.3702 0.3989 0.3728

4 Botnet
NO 0.0286 0.0349 0.0391 0.0236 0.0254
1M 0.0747 0.1957 0.1007 0.4218 0.0092
3M 0.3763 0.1636 0.0532 0.7073 0.0

5 Infiltration
NO 0.846 0.8446 0.7835 0.6519 0.7057
1M 0.8874 0.8834 0.8579 0.7592 0.8759
3M 0.9351 0.9404 0.8757 0.8335 0.8391

6 Web
NO 0.0178 0.0687 0.0175 0.0176 0.0164
1M 0.0 0.7554 0.0 0.7113 0.0
3M 0.8108 0.6307 0.0 0.8049 0.0

7 Brute-force
NO 0.0012 0.0012 0.0053 0.0 0.0001
1M 0.0 0.8008 0.322 0.5523 0.0
3M 0.8497 0.8857 0.3452 0.6955 0.01

8 DoS
NO 0.589 0.5999 0.5234 0.5929 0.5397
1M 0.758 0.7217 0.5952 0.5445 0.4427
3M 0.8032 0.8669 0.5195 0.6657 0.5381

Table D2: Test F1-score per scenario CICIDS 2017

Name Aggr. Model
AE VAE AEGMM IF MAH

C&C
NO 0.2702 0.2722 - 0.291 0.2815
1M 0.9219 0.8732 0.8165 0.9188 0.7475
3M 0.8211 0.6694 0.9108 0.9314 0.7174

Horizontal Port Scan
NO 0.1573 0.0206 - 0.5589 0.0067
1M 0.9762 0.9762 0.9762 0.4004 1.0
3M 0.9772 0.8867 0.8824 0.6657 0.6645

DDoS
NO 0.9754 0.9856 - 0.8144 0.6569
1M 0.6053 0.7759 0.4884 0.5924 0.6455
3M 0.64 0.381 0.0 0.25 0.9412

Attack
NO 0.0382 0.0418 - 0.0382 0.0152
1M 0.6206 0.5114 0.5568 0.625 0.6368
3M 0.4925 0.6819 0.675 0.6842 0.4718

File Download
NO 1.0 1.0 1.0 1.0 1.0
1M NA NA - NA NA
3M 1.0 1.0 1.0 0.6667 1.0

Table D3: Test F1-score per scenario IoT-23
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E Performance per Scenario on Split-by-Scenario
Benchmarks

This section presents the performance-per-scenario results obtained on the split-by-
scenario benchmark. The idea is the same as described in the previous section.

Id Name Aggr. Model
AE VAE AEGMM IF MAH

1 Neris
NO 0.0772 0.0067 0.0012 0.0093 0.001
1M 0.0226 0.0367 0.0085 0.0179 0.0073
3M 0.0123 0.0198 0.0046 0.0068 0.0002

2 Neris
NO 0.2315 0.0312 0.0012 0.0457 0.045
1M 0.0242 0.0383 0.0083 0.0195 0.0059
3M 0.0132 0.022 0.0052 0.0074 0.0002

6 Menti
NO 0.1194 0.0018 - 0.0008 0.0015
1M 0.0298 0.052 0.0313 0.0261 0.0103
3M 0.0204 0.0357 0.0099 0.0112 0.0008

8 Murlo
NO 0.0003 0.0004 0.0001 0.0011 0.0
1M 0.0112 0.0137 0.01 0.0087 0.0141
3M 0.0077 0.0112 0.005 0.005 0.001

9 Neris
NO 0.2229 0.039 0.0003 0.0891 0.0829
1M 0.1108 0.1804 0.0166 0.0977 0.0306
3M 0.0696 0.1083 0.033 0.0411 0.0018

Table E1: Test F1-score per scenario CTU-13

Id Name Aggr. Model
AE VAE AEGMM IF MAH

4 Botnet
NO 0.017 0.0185 0.0929 0.0188 0.0028
1M 0.0937 0.1626 0.0301 0.1997 0.1655
3M 0.185 0.1955 0.047 0.3123 0.2722

5 Infiltration
NO 0.0129 0.0099 0.0006 0.0005 0.0031
1M 0.25 0.0654 0.2431 0.0367 0.0361
3M 0.168 0.1597 0.2483 0.078 0.0238

7 Brute-force
NO 0.0004 0.0095 0.099 0.1072 0.0
1M 0.0765 0.1132 0.0 0.0443 0.0
3M 0.1305 0.1338 0.0669 0.0404 0.0224

8 DoS
NO 0.7549 0.7633 0.7216 0.5826 0.3749
1M 0.2651 0.0802 0.1684 0.0463 0.0268
3M 0.1231 0.1138 0.1402 0.0685 0.0211

Table E2: Test F1-score per scenario CICIDS 2017
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Name Aggr. Model
AE VAE AEGMM IF MAH

C&C
NO 0.4786 0.4565 - 0.4662 0.24
1M 0.5121 0.5121 0.561 0.684 0.5132
3M 0.5139 0.5139 0.5144 0.6701 0.2663

Horizontal Port Scan
NO 0.7269 0.6804 - 0.7039 0.0037
1M 0.75 0.7 0.6667 0.2165 0.5
3M 0.6667 0.5 0.0 0.0204 0.0

DDoS
NO 0.5449 0.5824 - 0.5319 0.9649
1M 0.5013 0.3346 0.1679 0.0033 0.0013
3M 0.5038 0.3372 0.0038 0.009 0.0038

Attack
NO 0.2979 0.3501 - 0.2979 0.2989
1M 0.5025 0.5025 0.5019 0.4961 0.5025
3M 0.5059 0.5059 0.5076 0.4892 0.5076

File Download
NO 0.0081 0.0085 - 0.0081 0.0081
1M 0.0 0.0 1.0 0.4 0.0
3M 1.0 1.0 0.6667 0.3636 0.0

Table E3: Test F1-score per scenario IoT-23
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