514 research outputs found

    Diagrammatic Quantum Monte Carlo for Two-Body Problem: Exciton

    Get PDF
    We present a novel method for precise numerical solution of the irreducible two-body problem and apply it to excitons in solids. The approach is based on the Monte Carlo simulation of the two-body Green function specified by Feynman's diagrammatic expansion. Our method does not rely on the specific form of the electron and hole dispersion laws and is valid for any attractive electron-hole potential. We establish limits of validity of the Wannier (large radius) and Frenkel (small radius) approximations, present accurate data for the intermediate radius excitons, and give evidence for the charge transfer nature of the monopolar exciton in mixed valence materials.Comment: 4 pages, 5 figure

    Quantum Dynamics of the Hubbard-Holstein Model in Equilibrium and Non-Equilibrium: Application to Pump-Probe Phenomena

    Full text link
    The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultra short powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a 3-peak structure in agreement with experimental observations. After an ultra short pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period Tph80T_{ph} \approx 80 fs. The decay time of the phonon oscillations is about 150-200 fs, similar to the relaxation time of the charge system. We propose a criterion for observing these oscillations in high TcT_c compounds: the time span of the pump light pulse τpump\tau_{pump} has to be shorter than the phonon oscillation period TphT_{ph}.Comment: 4 pages, 4 figure

    Mesoscopic Spin-Hall Effect in 2D electron systems with smooth boundaries

    Full text link
    Spin-Hall effect in ballistic 2D electron gas with Rashba-type spin-orbit coupling and smooth edge confinement is studied. We predict that the interplay of semiclassical electron motion and quantum dynamics of spins leads to several distinct features in spin density along the edge that originate from accumulation of turning points from many classical trajectories. Strong peak is found near a point of the vanishing of electron Fermi velocity in the lower spin-split subband. It is followed by a strip of negative spin density that extends until the crossing of the local Fermi energy with the degeneracy point where the two spin subbands intersect. Beyond this crossing there is a wide region of a smooth positive spin density. The total amount of spin accumulated in each of these features exceeds greatly the net spin across the entire edge. The features become more pronounced for shallower boundary potentials, controlled by gating in typical experimental setups.Comment: 4 pages, 4 figures, published versio

    Small-angle impurity scattering and the spin Hall conductivity in 2D systems

    Full text link
    An arbitrarily small concentration of impurities can affect the spin Hall conductivity in a two-dimensional semiconductor system. We develop a Boltzmann-like equation that can be used for impurity scattering with arbitrary angular dependence, and for arbitrary angular dependence of the spin-orbit field b(k) around the Fermi surface. For a model applicable to a 2D hole system in GaAs, if the impurity scattering is not isotropic, we find that the spin Hall conductivity depends on the derivative of b with respect to the energy and on deviations from a parabolic band structure, as well as on the angular dependence of the scattering. In principle, the resulting spin Hall conductivity can be larger or smaller than the ``intrinsic value'', and can have opposite sign. In the limit of small angle scattering, in a model appropriate for small hole concentrations, where the band is parabolic and b ~ k^3, the spin Hall conductivity has opposite sign from the intrinsic value, and has larger magnitude. Our analysis assumes that the spin-orbit splitting bb and the transport scattering rate tau^{-1} are both small compared to the Fermi energy, but the method is valid for for arbitrary value of b*tau.Comment: Errors corrected, references adde

    The strong Novikov conjecture for low degree cohomology

    Get PDF
    We show that for each discrete group G, the rational assembly map K_*(BG) \otimes Q \to K_*(C*_{max} G) \otimes \Q is injective on classes dual to the subring generated by cohomology classes of degree at most 2 (identifying rational K-homology and homology via the Chern character). Our result implies homotopy invariance of higher signatures associated to these cohomology classes. This consequence was first established by Connes-Gromov-Moscovici and Mathai. Our approach is based on the construction of flat twisting bundles out of sequences of almost flat bundles as first described in our previous work. In contrast to the argument of Mathai, our approach is independent of (and indeed gives a new proof of) the result of Hilsum-Skandalis on the homotopy invariance of the index of the signature operator twisted with bundles of small curvature.Comment: 11 page

    Universality of conductivity in interacting graphene

    Get PDF
    The Hubbard model on the honeycomb lattice describes charge carriers in graphene with short range interactions. While the interaction modifies several physical quantities, like the value of the Fermi velocity or the wave function renormalization, the a.c. conductivity has a universal value independent of the microscopic details of the model: there are no interaction corrections, provided that the interaction is weak enough and that the system is at half filling. We give a rigorous proof of this fact, based on exact Ward Identities and on constructive Renormalization Group methods

    Decay of a plasmon into neutral modes in a carbon nanotube

    Full text link
    We evaluate the rate of energy loss of a plasmon in a disorder-free carbon nanotube. The plasmon decays into neutral bosonic excitations of the electron liquid. The process is mediated either by phonon-assisted backscattering of a single electron, or Umklapp backscattering of two electrons. To lowest order in the backscattering interactions the partial decay rates are additive. At zero doping the corresponding decay rates scale as power-laws of the temperature with positive and negative exponents for the two mechanisms, respectively. The precise values of the exponents depend on the Luttinger liquid parameter. At finite doping the decay rates are described by universal crossover functions of frequency and chemical potential measured in units of temperature. In the evaluation of the plasmon decay, we concentrate on a finite-length geometry allowing excitation of plasma resonances.Comment: 10 pages, 4 figure

    Optical Conductivity of a Two-Dimensional Electron Liquid with Spin-Orbit Interaction

    Get PDF
    The interplay of electron-electron interactions and spin-orbit coupling leads to a new contribution to the homogeneous optical conductivity of the electron liquid. The latter is known to be insensitive to many-body effects for a conventional electron system with parabolic dispersion. The parabolic spectrum has its origin in the Galilean invariance which is broken by spin-orbit coupling. This opens up a possibility for the optical conductivity to probe electron-electron interactions. We analyze the interplay of interactions and spin-orbit coupling and obtain optical conductivity beyond RPA.Comment: 5 pages, 3 figures; final version, fig. 3 added, minor change

    Spin current and polarization in impure 2D electron systems with spin-orbit coupling

    Full text link
    We derive the transport equations for two-dimensional electron systems with spin-orbit interaction and short-range spin-independent disorder. In the limit of slow spatial variations of the electron distribution we obtain coupled diffusion equations for the electron density and spin. Using these equations we calculate electric-field induced spin accumulation in a finite-size sample for arbitrary ratio between spin-orbit energy splitting and elastic scattering rate. We demonstrate that the spin-Hall conductivity vanishes in an infinite system independent of this ratio.Comment: 5 pages, 1 figure; revised version according to referee's commment

    Optical conductivity of the Frohlich polaron

    Full text link
    We present accurate results for optical conductivity of the three dimensional Frohlich polaron in all coupling regimes. The systematic-error free diagrammatic quantum Monte Carlo method is employed where the Feynman graphs for the momentum-momentum correlation function in imaginary time are summed up. The real-frequency optical conductivity is obtained by the analytic continuation with stochastic optimization. We compare numerical data with available perturbative and non-perturbative approaches to the optical conductivity and show that the picture of sharp resonances due to relaxed excited states in the strong coupling regime is ``washed out''by large broadening of these states. As a result, the spectrum contains only a single-maximum broad peak with peculiar shape and a shoulder.Comment: 4 pages, 6 ps-figure
    corecore