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Optical Conductivity of a Two-Dimensional Electron Liquid with Spin-Orbit Interaction
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The interplay of electron-electron interactions and spin-orbit coupling leads to a new contribution to the 
homogeneous optical conductivity of the electron liquid. The latter is known to be insensitive to many- 
body effects for a conventional electron system with parabolic dispersion. The parabolic spectrum has its 
origin in the Galilean invariance which is broken by spin-orbit coupling. This opens up a possibility for the 
optical conductivity to probe electron-electron interactions. We analyze the interplay of interactions and 
spin-orbit coupling and obtain optical conductivity beyond RPA.
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Introduction.—Spin-polarized transport phenomena 
have recently become a subject of extreme interest, with 
the ultimate goal of achieving selective local manipulation 
of spins by means of electric fields. The vast majority of 
theoretical works and spintronic proposals, however, uti­
lizes the approximation of independent clcctrons, neglect­
ing many-body effects. Effects of interactions, however, 
arc traditionally among the most interesting, though most 
challenging, problems in condensed matter physics. In this 
Letter wc report the effect that arises as a result of the 
interplay of electron-electron interactions and spin-orbit 
coupling in an clcctron liquid.

The response of an electronic system to a homogeneous 
electric field is described by its optical conductivity a(co). 
This quantity is known to be independent of the effects of 
electron-electron interactions for a system with the para­
bolic dispersion, H =  p 2/2m,  as long as collisions with 
impurities, surface imperfections, and phonons can be 
neglected [11. This is due to the fact that electric current, 
j  =  <?XP/ m ' ' s proportional to the total momentum of 
particles. The latter, however, is not changed by clcctron 
collisions in a translationally invariant system (that implies 
abscncc of umklapp scattering, usually negligible in semi­
conductors), which also includes the presence of a homo­
geneous electric field. Therefore, homogeneous optical 
conductivity typically cannot be used as a probe for 
many-body effects. The situation changes completely in 
the presence of spin-orbit coupling.

The parabolicity of the spectrum is intimately related to 
the Galilean invariance. However, in semiconductors such 
as GaAs or In As, spin-orbit coupling is always present, 
being especially pronounced in two-dimensional structures 
transvcrsally confined to quantum wells. Spin-orbit cou­
pling is rclativistic in nature and breaks Galilean invari­
ance, making many-body effects important for the optical 
conductivity a(a>). Indeed, in the presence of spin-orbit 
coupling in the Hamiltonian, Hm =  p 2/2m  -  lip • &, the 
operator of electric current, j  =  e £ [ p /m  -  ^p(hp ' o’)]- 
becomes spin dependent and docs not reduce to the total 
momentum. The conservation of the latter during electron- 
electron scattering events no longer implies conservation
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of current. This makes the homogeneous optical conduc­
tivity sensitive to many-body effects.

Though our method is applicable for arbitrary spin-orbit 
interaction, wc concentrate here on its isotropic, 
“ Rashba” , type [21, which assumes h p =  A( — px. 0). 
The effective momentum-dependent magnetic field h p lies 
within the plane of 2DEG while being perpendicular to the 
clcctron momentum. Lifting of the spin degeneracy due to 
spin-orbit coupling results in the possibility of single­
particle absorption (Landau damping) even for zero trans­
ferred momentum q. This leads to the boxlikc shape con­
tribution into the real part of the optical conductivity at 
zero temperature [3,41 (hereinafter wc assume h =  1),

e2
cr'iico) =  — 0(2m A2 — |5<w|), Sco = co — 2 ApF,

(1)

where p F is the value of the Fermi momentum. Spin-orbit 
induced Landau damping (1) is also known as the “ com­
bined” [51 or “ chiral spin” [61 resonance. The issue of a 
modification of the chiral spin resonance by electron- 
electron interactions has been addressed with the help of 
the Landau interaction function formalism [61. Though 
within this model interactions renormalize the effective 
strength of the spin-orbit coupling constant (sec also the 
earlier paper [71); they do not result in the broadening of 
the chiral spin resonance.

It is the aim of our work to analyze the many-body 
effects beyond random phase approximation, Hartrcc- 
Fock model, or Landau interaction function formalism. 
In particular, wc arc interested in the absorption channel 
that involves the excitation of two clcctron-holc pairs. 
Taking into account two-pair processes removes the 
phasc-spacc constraint that leads to the © function in the 
single-pair term, Eq. (1), and, thus, results in a much 
broader contribution. Indeed, constraints in the single­
pair channel originate from the vanishing of the total trans­
ferred momentum q in the case of a homogeneous external 
electric field. In contrast, two-pair processes have a large 
phase space available, since two pairs can carry large 
momenta of opposite signs, and still have zero net momcn-
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turn. To calculate the contribution from the two-particle 
channel to the optical conductivity, one needs to evaluate 
the non-RPA diagrams shown in Fig. 1. For a finite tem­
perature and the simplest case of a short-range interaction 
independent of momentum, V, we obtain.

cr'j(co) =
2e2m2A2V2

X J2  co2
3v2F(2 tt)4co2 1(2 ttT)2,

CO »  TT T, 
(O <5C TT T, (2)

where v F = p F/ m  is the Fermi velocity. The subscript in 
the notation of a'2(co) in Eq. (2) distinguishes the many- 
body contribution from the single-pair result, Eq. (1).

Derivation.—Instead of calculating the real part of the 
optical conductivity directly from the set of diagrams of 
Fig. 1, we employ an equivalent and arguably more trans­
parent method. Namely, we identify various processes 
leading to absorption (and emission) in the two-particle 
channel and calculate their transition probabilities using 
the golden rule formalism [81. In diagrammatic terms, 
these various processes correspond to all possible cuts of 
the diagrams. Fig. 1, across any four fermion lines.

We begin with calculating transition rates between dif­
ferent two-particle states. The two-particle wave function 
is given by the Slater determinant,

«^k(Xl. x2) =  ^=[</'p(x l)</'k(x2) “  '/'p(x2)</'k(x,)]. (3)

Here <//p(x) is a single-particle wave function with the 
momentum p belonging to the ath spin subband, a = 
±  1; the notation x stands for the in-plane coordinates, x =  
(x, y). For the Rashba coupling the eigenstates are

ae
e 'X  P/2

'-Vp/2
jip-x/ft (4)

FIG. i. Non-RPA contributions into optical conductivity from 
the two-pair channcl. Dashed line stands for the electron- 
electron interaction. The last three diagrams originate from 
exchange processes.

where x P denotes the angle between the momentum p and 
the y axis. The energy of these eigenstates is

=  p2/2 m  + aXp. (5)

It is now necessary to calculate the probability of a tran­
sition from a state if/"k into another state if/cpik, in the 
presence of both the electron-electron interaction Wxj -  
x2) and the electric field, which is described by a scalar 
potential.

4>(x, t) = <f>0e - io,,+i* x + *q*x (6)

Coupling of electrons to the external field (6) as well as the 
electron-electron interaction are treated in the second- 
order perturbation theory. Spin-orbit coupling, oil the other 
hand, is not assumed to be small for the time being. 
Transition probability between different two-particle 
states, accompanied by the absorption of the energy co 
from the external field, has the following form:

d W alr i 1., pk—*p'k' =  2Tre2\(/>0 \28 (e ‘' + -  e ,  -  e; + a)) I M ,
r

5(p + k -  p' -  k' + q)
d2p'd2k'

(7)

where M f  is the amplitude for the transitions that occur via virtual states belonging to a subband f .

M f  = -
JA af / M /<• w flbcl _  a f d  w %bc \ { %af  1/ 'Abel _  a  ad w M hf  ) M/« 

p.p+q'- p+q,p' ’'k -k '-^k .k ' ' /1D +n.l''p '-k ‘/1k.ii'' l '/Hn n '- / k - k '- / l k.k' '/ l n .k ''p -kk.p1

“1“ Ct)P p+q

p p -<i k,k ' l p ,k 'VP- k .p '-q  [)' q,[)'

ep ' - < ' - q “ W
'7\bf  / W n f d  _  <2 ad w \ ( M ac w , M bf  -  % df w M be \ rtfd

| ^ k .k + q '-  p.p' P P k + q .k ' ^ p . k ' KP - k ' ^ k + q  p//   ̂ 1 ^ p . p ' ^ p - p ' ^ k . k ' - q  ■/ l n k ' - / p ' - i i - / l k n' ' ' / 1 k ' -

CO

Here V^-p/ stands for the Fourier transform of the inter­
action potential, the notation ^ p ‘p/ is used for the overlap 
of spin wave functions of single-electron states (4) before 
(<//p) and after (<//,) the scattering:

JA " p, =  V ’/2 + ace~ilx' ~ xp,)/2). (9)

The origin of various terms in the transition probability (7) 
and (8) is graphically represented in Fig. 2(a).

<-d _  , /  
k ' k '- q CO

I-----------------------------------------------------------------------------
The knowledge of transition probabilities allows one to

find the rate at which the electron system absorbs energy 
from the external field (6). Taking into account the popu­
lation of the electronic states, the energy absorption rate 
can be written as the sum over initial and final states.

'■>» - f I  /  ‘̂ ^ d w i c ' X ' n 'iPnht {' -

Here na„ is the Fermi-Dirac distribution for the a th  sub-
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(a) P.a

W \y
p+q>/

p',c

k-k'

hm = ■ The energy dissipation rate fabs -  Iem can
then be related to the real part of the optical conductivity at 
finite q,

cr'((o. q)
( i  -  e - ,u/T)r,abs (10)

FIG. 2. (a) Graphic representation of the two-electron absorp­
tion amplitude M r, see Eq. (8). The wavy line (external electric 
field) can be inserted in four different ways (not shown here). In 
addition, interchange of the final states e p ' dk'  yields four 
exchange terms, leading to the total of eight different terms in 
Eq. (8). Propagators of the virtual states result in the energy 
denominators. Each vertex brings a factor J4"‘k, where p, a and 
k, c are the incoming and outgoing electron momenta and 
subband indices, respectively, (b) Electron momenta prior to p, 
k and after p + Q, k -  Q collision. The angle of incidence 
between momenta p and k is denoted by IK and the angle of 
scattering between p and Q by </>.

band; the coefficient 1/4 prevents double counting of the 
initial and final states. The rate of emission of energy, Iem is 
most simply found from the detailed balance principle [91,

The general form of the optical conductivity q) is too 
cumbersome to analyze here, so we concentrate on the 
most interesting, homogeneous limit, oJ{co) = a'{(o,q—> 
0). When taking the limit q —* 0 it is helpful to note that the 
matrix (9) reduces to the Kronecker symbol for coinciding 
momenta. The matrix element M f  thus vanishes in this 
limit, as required by the presence of q2 in the denominator 
of Eq. (10). We emphasize the appearance of terms linear 
in q, which are due to spin-orbit interaction. When the 
latter is absent, the interference between the four terms in 
the absorption amplitude (8) leads to the cancellation of the 
linear terms and the vanishing of cr2{(o) [81. To expand 
Eq. (8) to the linear order in q, we note that only the 
denominators need to be expanded, as the expansion of 
the numerators leads only to small corrections. As a result, 
we obtain,

A2(l -  e- ,u/T) 
16a?

d 2p d 2kd2p 'd2k'
(2irh)5 -  ^ k ' - ^ k V V - k l 2«p«*U -  «£„,)(1 -  nf,)

X (aiip +  b n k -  nip/ -  diiki)2S(e‘p +  -  e£, +  h(o)S(p +  k — p ' — k'). (11)

where np is the unit vector in the direction p. As seen from its form, this result is due to the interplay of spin-orbit coupling 
and electron-electron interaction.

To proceed further, we utilize the fact that spin-orbit coupling is typically small, mA «  p F. Since the homogeneous 
optical conductivity (12) is already proportional to A2, in the leading order it is sufficient to take the limit A —* 0 in the 
delta-function and Fermi-Dirac distributions in the integrand of Eq. (12). The summation over the subband indices can then 
be easily carried out,

A2( l - ^ ' " / r ) f  d1p d 1kd1Q
I 'l  II U ■ ■ fa ' ( « )

2(0-' 1 - {2ir f
■‘P { p , k ,Q )n „ n k{l -  n„){ 1 -  nk')8{ep +  ek -  e , -  ek, +  hw). (12)

Here we integrated out the momentum delta function by 
introducing explicitly the momentum of electron-hole 
pairs, Q = p' -  p = k -  k '. The explicit expression for 
the probability of inelastic collisions T{p, k, Q) is simple 
but rather lengthy. In the simplest case of screened (e.g., by 
a metallic gate) short-range interaction Vt/ = V, this proba­
bility is given by P{p,  k, Q) =  V2[2 -  (np • n k)2 -  (np/ • 
n k/)2]. In order to evaluate the integrals in Eq. (12), it is 
convenient to make use of the variables $p, $k, Q, 6, 4>, 
where $p = {p2 -  p 2F)/2m,  and the choice of angles 6 and 
4> is illustrated by Fig. 2(b). Then d 2pd2kd2Q = 
2{2Tr)m2dt;pd $ kQdQd8d(j)', here the extra factor 2 comes 
from the processes that differ from those shown in Fig. 2(b) 
by rotating vectors p', k ' around the direction of the vector 
p +  k by the angle t t .

If (o, T  «  p 2F/2m,  the characteristic momenta of 
electron-hole pairs, Q ~  max(&>, T ) / v F, are much smaller 
than the Fermi momentum p F. Thus, we can approximate 
T  ~  2 V/2sin2<9. The argument of the delta function in this

I-----------------------------------------------------------------------------
limit, (o -  Q v Fcos(f) +  Q v F cos{6 -  4>), is independent
of $p and $k. This makes it possible to perform integration 
over d $ pd$ k first. The integral over dQ  then removes the 
delta function. Resulting angle integrals cannot be calcu­
lated analytically for arbitrary temperatures. However, two 
important limits, w »  ttT  and w «  ttT ,  can be easily 
analyzed. After some straightforward calculations we ar­
rive at Eq. (2).

Long-range interaction. —Let us now address the case of 
a long-range RPA Coulomb interaction which we consider 
here for the 7  =  0 limit only. The interaction can be 
written with the help of the usual dimensionless parameter 
rs = \ /2me2/ { p Fs), as =  \f2TTrsv F/{\k\  +  \ f2rsp F)\ 
here s  is the dielectric constant. The scattering probability 
can now be approximated with [101,

T
2-n-2r2sin20

m 2{\/1 — cos# +  r,.)2
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FIG. 3. Dcpcndcncc of the many-body optical conductivity, 
measured in units of <rA = e1 X1 /  (2ttv F)2. on the interaction 
parameter r s for long-range Coulomb interaction.

The angle integrals can be performed numerically; depen­
dence of cr2 on the electronic density is shown in Fig. 3.

Discussion. —Let us emphasize a number of important 
points concerning this result. At zero temperature, the 
many-body contribution a'2 is ~ \ 2/ v 2F times weaker 
than the one-particle Landau damping a \ ,  but it has 
much broader spectrum. Also, in contrast to Landau damp­
ing, <r'2 is enhanced with increasing the temperature. Note 
that when frequency decreases, ca —> 0, and temperature is 
kept constant, a'2(ca) diverges. This singularity s is cutoff 
by the finite scattering rate r _1 due to small amount of 
phonons (present for any finite T) or impurities.

The absence of a logarithm in the many-body optical 
conductivity is in sharp contrast with other quantities 
describing properties of 2DEG, namely, quasiparticle life­
time [11-14], Coulomb drag resistivity [15], thermal con­
ductivity [16,17], or finite-*/ optical conductivity [8]. This 
is a consequence of the vanishing of the amplitude T  & Q2 
in Eq. (12) for almost collinear, 6 ~  0, t t ,  scattering pro­
cesses. Indeed, as the corresponding scattering amplitudes 
are enhanced for such collinear processes, the logarithmic 
factor, typical for 2D, may be viewed as a "trace” of 
weakened one-dimensional singularities [18]. The problem 
analyzed in the present work, however, is inherently differ­
ent. In one dimension the discussed effect would be absent. 
Despite the fact that spin-orbit coupling breaks Galilean 
invariance in one dimension as well, the spin-conserving 
nature of the Coulomb interaction assures that electrons 
preserve their chirality (subband indices) during collisions. 
Thus, the interplay of spin-orbit coupling and interactions 
does not modify the optical conductivity of a one­
dimensional electron system.

An important note should be made about exchange 
processes. Since it is the entire range of angles, 6 ~  1, 
that contributes to the optical conductivity in 2DEG with 
spin-orbit coupling, and not simply the forward scattering 
domain, 6 — 0, the exchange processes are important. 
Therefore, all diagrams in Fig. 1 are relevant. This is 
different from a typical scenario when exchange processes 
are negligible provided that the density of carriers is high.

Summary and conclusions. —We have analyzed the 
many-body contribution to the optical conductivity of a 
two-dimensional electron liquid in the presence of spin-

orbit coupling. The latter breaks Galilean invariance, mak­
ing electron dispersion nonparabolic. This opens a possi­
bility for optical conductivity to be used as a probe for 
many-body effects. This nontrivial interplay of spin-orbit 
coupling and electron-electron interactions was revealed 
here for the first time. Experimental observation of the 
above effect can be performed in GaAs-based quantum 
wells as well as in 2D states on the vicinal surfaces (111) 
of noble metals [19,20]. To eradicate extraneous electron 
scattering the measurements have to be performed on clean 
samples at low temperatures.
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