91 research outputs found

    The Link Among Neurological Diseases: Extracellular Vesicles as a Possible Brain Injury Footprint

    Get PDF
    Extracellular vesicles (EVs), referred as membranous vesicles released into body fluids from all cell types, represent a novel model to explain some aspects of the inter-cellular cross talk. It has been demonstrated that the EVs modify the phenotype of target cells, acting through a large spectrum of mechanisms. In the central nervous system, the EVs are responsible of the wide range of physiological processes required for normal brain function and neuronal support, such as immune signaling, cellular proliferation, differentiation, and senescence. Growing evidences link the EV functions to the pathogenic machinery of the neurological diseases, contributing to the disease progression and spreading. Extracellular vesicles are involved in the brain injury by multimodal ways; they propagate inflammation across the blood brain barrier (BBB), mediate neuroprotection and modulate regenerative processes. For these reasons, extracellular vesicles represent a promising biomarker in neurological disorders as well as an interesting starting point for the development of novel therapeutic strategies. Herein, we review the role of the EVs in the pathogenesis of neurological disease, discussing their potential clinical applications

    Transient shift of diacylglycerol and inositol lipids induced by interferon in Daudi cells Evidence for a different pattern between nuclei and intact cells

    Get PDF
    AbstractThe effect of human recombinant DNA interferon-α type A on inositol lipid and diacylglycerol metabolism was investigated in Daudi lymphoma whole cells and isolated nuclei. In isolated nuclei after 90 min of interferon treatment an enhanced rate of PIP2 phosphorylation and an increase of DAG mass were observed. In whole cells, after 1 min of interferon treatment, there was a rapid and transient shift of DAG mass apparently not related to inositol lipid modifications, thus indicating the presence in nuclear and cytoplasmic compartments of inositol lipid fractions with different metabolic features in response to interferon-α

    Interferon-mediated intracellular signalling Modulation of different phospholipase activities in Burkitt lymphoma cells

    Get PDF
    AbstractThe effect of interferon-α on Daudi lymphoma cells either sensitive or resistant to the action of this cytokine has been analysed in terms of phospholipase C (PLC) and D (PLD) activities. Results have shown a combined modulation of PIP2-specific phospholipase C and phospholipase D. In particular, a decreased activity of PIP2-specific PLC has been found, concomitant to a PLD-mediated phosphatidylcholine hydrolysis, suggesting that the intracellular signaling activated by interferon in Daudi cells involves a phospholipase D/phosphohydrolase pathway

    The role of PKCzeta in cord blood T-cell maturation towards Th1 cytokine profile and its epigenetic regulation by fish oil

    Get PDF
    While immunodeficiency of immaturity of the neonate has been considered important as the basis for unusual susceptibility to infection, it has also been recognized that the ability to progress from an immature Th2 cytokine predominance to a Th1 profile has relevance in determining whether children will develop allergy, providing an opportunity for epigenetic regulation through environmental pressures. However, this notion remains relatively unexplored. Here, we present evidence that there are two major control points to explain the immunodeficiency in cord blood (CB) T-cells, a deficiency in interleukin (IL)-12 (IL-12) producing and IL-10 overproducing accessory cells, leading to a decreased interferon γ (IFNγ) synthesis and the other, an intrinsic defect in T-cell protein kinase C (PKC) ζ (PKCζ) expression. An important finding was that human CB T-cells rendered deficient in PKCζ, by shRNA knockdown, develop into low tumour necrosis factor α (TNFα) and IFNγ but increased IL-13 producing cells. Interestingly, we found that the increase in PKCζ levels in CB T-cells caused by prenatal supplementation with fish oil correlated with modifications of histone acetylation at the PKCζ gene (PRKCZ) promoter. The data demonstrate that PKCζ expression regulates the maturation of neonatal T-cells into specific functional phenotypes and that environmental influences may work via PKCζ to regulate these phenotypes and disease susceptibility.Hani Harb, James Irvine, Manori Amarasekera, Charles S. Hii, Dörthe A. Kesper, YueFang Ma, Nina D′Vaz, Harald Renz, Daniel P. Potaczek, Susan L. Prescott and Antonio Ferrant

    Beta-Amyloid Peptides Enhance the Proliferative Response of Activated CD4+CD28+ Lymphocytes from Alzheimer Disease Patients and from Healthy Elderly

    Get PDF
    Alzheimer's disease (AD) is the most frequent form of dementia among elderly. Despite the vast amount of literature on non-specific immune mechanisms in AD there is still little information about the potential antigen-specific immune response in this pathology. It is known that early stages of AD include β-amyloid (Aβ)- reactive antibodies production and inflammatory response. Despite some evidence gathered proving cellular immune response background in AD pathology, the specific reactions of CD4+ and CD8+ cells remain unknown as the previous investigations yielded conflicting results. Here we investigated the CD4+CD28+ population of human peripheral blood T cells and showed that soluble β-amyloids alone were unable to stimulate these cells to proliferate significantly, resulting only in minor, probably antigen-specific, proliferative response. On the other hand, the exposure of in vitro pre-stimulated lymphocytes to soluble Aβ peptides significantly enhanced the proliferative response of these cells which had also lead to increased levels of TNF, IL-10 and IL-6. We also proved that Aβ peptide-enhanced proliferative response of CD4+CD28+ cells is autonomous and independent from disease status while being associated with the initial, ex vivo activation status of the CD4+ cells. In conclusion, we suggest that the effect of Aβ peptides on the immune system of AD patients does not depend on the specific reactivity to Aβ epitope(s), but is rather a consequence of an unspecific modulation of the cell cycle dynamics and cytokine production by T cells, occurring simultaneously in a huge proportion of Aβ peptide-exposed T lymphocytes and affecting the immune system performance
    corecore