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Abstract
Extracellular vesicles (EVs), referred as membranous vesicles released into body fluids from 
all cell types, represent a novel model to explain some aspects of the inter-cellular cross talk. 
It has been demonstrated that the EVs modify the phenotype of target cells, acting through 
a large spectrum of mechanisms. In the central nervous system, the EVs are responsible of 
the wide range of physiological processes required for normal brain function and neuronal 
support, such as immune signaling, cellular proliferation, differentiation, and senescence. 
Growing evidences link the EV functions to the pathogenic machinery of the neurological 
diseases, contributing to the disease progression and spreading. Extracellular vesicles are 
involved in the brain injury by multimodal ways; they propagate inflammation across the 
blood brain barrier (BBB), mediate neuroprotection and modulate regenerative processes. For 
these reasons, extracellular vesicles represent a promising biomarker in neurological disorders 
as well as an interesting starting point for the development of novel therapeutic strategies. 
Herein, we review the role of the EVs in the pathogenesis of neurological disease, discussing 
their potential clinical applications.
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Introduction

The term ‘‘extracellular vesicles’’ (EVs) refers to membrane-surrounded vesicles, 
that, together with metabolite solutions, ions, proteins and polysaccharides makes up the 
extracellular milieu. Growing evidences have proposed the EVs as novel mediators of the 
inter-cellular cross talk. Extracellular vesicles determine the modification of the phenotype 
of target cells, acting through a large spectrum of mechanisms [1]. They represent specific 
‘packages’ containing different bioactive materials, such as cytosolic and membrane proteins, 
mRNAs, non-coding RNAs, and even DNA fragments [2]. Extracellular vesicles are released 
virtually from all cell types and represent multimodal signaling vehicles able to travel wide 
range of distances in many body fluids. As a matter of fact, the EVs have been found in the 
peripheral blood, in the milk, in the saliva, in the cerebrospinal fluid (CSF), in the tears and 
in the urine, where they carry specific biological messages [3–5]. Extracellular vesicles, 
can be categorized as exosomes, activation- or apoptosis-induced microvesicles (MVs)/
microparticles and apoptotic bodies, based on their biogenesis and their size [6]. However, 
they also include other vesicular structures originating from plasma membranes, such as 
exosome-like vesicles that lack lipid raft micro-domains and membrane particles [7, 8].

Exosomes are small vesicles (approximately 50 – 100 nm in diameter) surrounded by 
a phospholipid bilayer, released by exocytosis of multivesicular bodies (MVBs) [9]. They 
expose phosphatidylserine on their surfaces, and CD63, CD81, CD9, LAMP1 and TSG101 
are considered common exosome markers [6]. Exosomes exert their biological functions by 
different ways, including direct surface contact between the EVs and the target cells, the 
endocytosis, the EV-cell membrane fusion and the horizontal transfer of the mRNA/miRNA, 
the oncogenic receptors and the HIV particles [10–13]. Exosomes have been largely described 
both as mediators of the immune cell functions (involving dendritic, T and B cells, as well as 
macrophages), as well as regulators of the tumor mechanisms, where their key role is linked 
to presentation of the antigen and to immunomodulatory activity [10, 14].

Microvesicles have been predominantly described as platelets, endothelial and red blood 
cells products. Their diameters measure 100 – 1, 000 nm [10, 15], and are surrounded by a 
phospholipid bilayer that may or not expose phosphatidylserine on the membrane surface 
[16]. The regulated release of the MVs, by budding/blabbing of the plasma membrane, is 
induced upon the activation of cell surface receptors. Microvesicles have pro-coagulant 
functions and represent a form of secretion for the IL1b. The role of the MVs has been also 
described in the pathogenesis of rheumatoid arthritis, in the mechanisms associated to 
tumor pro-invasive characteristics, and in the induction of oncogenic cellular transformation 
and feto-maternal communication [6].

Apoptotic Bodies are approximately 1 – 5 µm in diameter; they are released as blebs 
from cells undergoing apoptosis and are characterized by phosphatidylserine externalization 
[17, 18]. Apoptotic bodies horizontally transfer oncogenes and/or DNA, are involved in 
the presentation of the T cell epitopes upon their uptake by phagocytic cells and in the 
representation of the B cell autoantigens [6].

Regardless of differences mentioned above, the terms of the “EVs”, “microvesicles” 
and “exosomes” have been interchangeably used in the literature, therefore, confounding 
the evaluation of obtained results. However, given that EVs are characterized by 
small size, the EV detection require several pre-analytical enrichment steps (i.e. the 
centrifugation/ultracentrifugation, the ultrafiltration, the size exclusion chromatography, 
the immunocapture, the hydrostatic dialysis or the hydrostatic filtration dialysis (HFD). For 
these reasons, their final characterization uses highly manipulated material [19, 20]. In this 
context, the final measurement may not reflect the initial characteristics of the samplest 
[21]. For this reasons, several working-groups composed by experts in the field, are studying 
standardization methods for the EV clear identification and analysis [22, 23].
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Physiological role of EVs in the Central Nervous System

In the Central Nervous System (CNS), the EVs have been involved in the rich network of 
intercellular connections responsible for the maintenance of the physiological homeostasis 
as well as for the development of the pathogenic machinery leading to neurological diseases 
(neurodegenerative disorders, as well as brain tumors and stroke).

It has been demonstrated that the EVs released by neurons and glial cells are able to 
pass across the brain blood barrier (BBB), through a mechanism known as trans-cytosis [24. 
37, 40]. This allows the systemic propagation of physio-pathological information; the EVs 
have been proposed, therefore, as peripheral biomarker candidates for neurological diseases 
[25-27] (Fig. 1). Extracellular vesicle biogenesis give rise to their specific cargo packaging, 
which is strictly related both to the characteristics of their relative parental cells and to 
the stimulus which has determined their release [27]. It has been shown, that microglial-
derived EVs expose CD13 and monocarboxylate transporter 1 [28], the neural-derived EVs 
move the cell adhesion molecule L1, the GPI-anchored prion protein and the subunits of 
glutamate receptors [29]; while the astrocyte-derived exosomes carry functional glutamate 
transporters and mitochondrial DNA [30, 31]. In addition, the oligodendrocytic-derived 
exosomes transport myelin and associated lipids [32]. As already underlined, the content of 
the EV depends on the stimulus received. It is known that several mechanisms, such as the 
synaptic activity, the depolarization, the function of sphingolipid-metabolizing enzymes and 
the PARK9 influence the release of exosomes from neurons [29, 33–35]. On the other hand, 
the serotonin-Wnt3a and the neurotransmitter glutamate regulate the EV production from 
microglia and oligodendrocytes, respectively [36-38].

Extracellular vesicles are also responsible of several physiological processes required 
for normal brain functions and neuronal support, including immune signaling, cellular 

Fig. 1. Extracellular Vesicle’ Origin, Cargo and Clinical Applications. Extracellular Vesicles secreted by 
neurons and glial cells are able to cross the brain blood barrier (BBB) through a mechanism known as 
trans-cytosis and their impact on target cells depends by the cargo that they shuttle. Thus, the EVs could 
represent a diagnostic and functional biomarker as well as suitable therapeutic agents in neurological 
diseases. Source: Servier Medical Art by Servier and modified under the following terms: Creative Commons 
Attribution 3.0 Unported license (CC BY 3.0).

Exosome
50-100 nm

Microvescicle
100 – 1,000 nm 

Apoptotic Body
1 – 5 µm 

EV Classification

BBB

Astrocyte

Neuron

EV Applications

EV

Blood Stream CSF

Tears

Saliva

Breast milk

Blood

Urine

Oligodendrocyte

Microglia

DNA

Transcription
Factors

mRNA

Misfolded proteins

Cytosolic proteins

EV Cargo

EV Biogenesis



Neurosignals 2019;52:25-39
DOI: 10.33594/000000116
Published online: 1 June 2019 28

© 2019 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Ciccocioppo et al.: Extracellular Vesicles and Neurological Diseases

proliferation, differentiation, and senescence [39-41]. The EVs transfer synaptic proteins, 
mRNAs and miRNAs, therefore allowing the cell-to-cell communication, modulating 
functions and phenotypes of target cells [42, 43]. Extracellular vesicles are also involved 
in the clearance of the unwanted materials and cellular waste [22]. Moreover, they show a 
key role in the synaptic activity [29, 38, 44], as well as in promoting neuroprotection and 
regeneration in brain diseases [45–48].

The neuron–glia cross-talk EV-mediated appears linked to synaptic functions, to 
neurovascular integrity and to myelination in the CNS. It has been demonstrated that the 
EVs carry several proteins linked to synaptic plasticity mechanisms, such as the a-amino-
3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor components and the 
trafficking protein Evi/Wntless, involved in the formation of synaptic buttons [29, 35, 49–
52]. Extracellular vesicles are also involved in the brain vascular integrity maintenance 
through the transfer of the miR-132 into endothelial cells, followed by the upregulation of the 
adherent junction protein Cdh5 expression [53]. In addition, acting through a Rho-associated 
coiled-coil protein kinase (ROCK) activation and regulation of actomyosin contractility, the 
EVs are involved in myelination and re-myelination processes [54]. Extracellular vesicles 
convey miR-219 into oligodendrocyte precursor cells (OPC) increasing the OPC numbers 
and their myelin production, thereby repressing the expression of negative regulators of 
myelination [55–57]. The glial-originated EVs appear to offer neuron support, providing 
a regulatory feedback on presynaptic activity, both in the excitatory and the inhibitory 
neurotransmission [50]. The neuronal internalization of the oligodendrocyte-derived EVs 
[58], leads to functional cargo recovery and to genetic modulations of the specific plasticity-
related targets, such as the VGF nerve growth factor inducible (VGF) and the brain-derived 
neurotrophic factor (BDNF) [38, 59]. On the other hand, the microglial-secreted EVs lead to 
increased presynaptic release of neurotransmitters, through a stimulation of the neuronal 
sphingolipid metabolism the amplifies the excitatory neurotransmission [44, 60]. The 
glial EVs have been shown to also carry several enzymes, supporting the neuronal energy 
metabolism [28, 32, 61].

Results

Emerging concepts propose the EVs as key mediators in the information network linked 
to the pathogenic machinery of the neurological diseases. Extracellular vesicles are involved 
in the brain injury through multimodal ways; they propagate inflammation across the BBB, 
but also mediate neuroprotection and modulate regenerative processes. The EV-mediated 
signaling appears to support neuronal survival during ischemic stress [62], it is also linked 
to brain cancer progression [63] and contributes to protein aggregation processes and 
clearance in neurodegenerative diseases [50]. In Table 1 we have resumed the EV roles in 
neurological disorders.

Neurodegenerative Diseases
Neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease 

(AD) and Amyotrophic Lateral Sclerosis (ALS) represent relevant issues for public health. In 
the aforementioned pathologies the lack of preclinical biomarkers for the identification of the 
early stages of the toxic protein aggregation processes makes impossible the administration 
of specific treatments to control the iceberg pathogenic machinery [64–66]. According to 
these reasons, the research focuses its interest on the EVs as potential source of information 
in early pathological disease stages Extracellular vesicles could represent diagnostic and 
functional biomarkers as well as suitable therapeutic agents in neurodegenerative diseases, 
allowing the monitoring of the pathogenic status in real time [67]. Recent literature 
describes the EV shuttle role in the spreading of misfolded proteins through a prion like 
mechanism in the cerebral “proteinopathies”, such as the b-amyloid (Ab) and the tau protein 
in AD, the a-synuclein protein in PD and the TDP-43 in ALS [68–70]. The gene alteration, the 
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protein translation, the lysosomal dysfunction and the RNA transfer promote the misfolded 
protein shuttle from a “diseased cell” to a “healthy cell target” producing aggregation and 
accumulation of the misfolded protein in the target recipient cells [71, 72]. In the Parkinson’s 
disease, the cellular overexpression and the aggregation of a-synuclein in Lewy bodies 
and Lewy neurites result linked to increased transport of a-synuclein via EV [73]. In this 
contest, the lysosomal dysfunction is involved in the cell-to-cell transmission of a-synuclein 
oligomers packaged in the EVs, representing a second attempt to prevent toxic protein 
accumulation [74]. Recent studies on the SH-SY5Y cells have described that the a-synuclein 
is conveyed via exosomes [75], providing the catalytic conditions for nucleation and toxic 
misfolded protein accumulation [76]. It has been shown that the CSF level of a-synuclein 
protein packaged in EVs is straightly related to the cognitive impairment in the PD patients 
[77]. Furthermore, additional data reinforced the hypothesis that the EVs could referee the 
neurodegenerative machinery by increasing the induction of specific apoptotic pathways [63, 
78]. Similarly, the Ab protein is a proteolytic product of the amyloid precursor protein (APP), 
which is sequentially cleaved by secretase (BACE1) and the gamma-secretase complex; 
its aggregation and the related toxic accumulation has been implicated in the Alzheimer’s 
disease neuropathology [67]. According to the current view, it has been suggested that the 
EVs represent a multimodal way for the spreading of the Ab and Tau neuropathology among 
neurons [79–81]. The evidence that the Ab peptides (i.e. APP, APPC terminal fragments, APP 
intra-cellular domain, Ab) are exosomes-associated, together with the evidence that some 
typical exosome proteins (e.g., flotillins, Alix) have been found in the amyloid plaques, could 
explain the plaque formation in the AD brain [67, 82–84].. However, the role of the EVs in 
AD is controversial. In such a context, several data have described that the EVs mediate Ab 
neurotoxicity by neutralizing the expression of the surface proteins in the EVs [85].  It has 
been also described that the EVs play a key role as scavengers of neurotoxic Ab. In the mouse 
model of the Alzheimer’s disease, after the intracerebral inoculation of the neuronal-derived 

Table 1. The Extracellular Vesicles’ Roles in Neurological Disorders

Neurological 
Diseases 

EV Involvement References 

Proteinopathies 

Mediation of protein aggregation processes and neurotoxic aggregates clearance; 

Contribution to mitochondrial and lysosomal dysfunction; 

Induction of specific apoptotic pathways. 

[50,79,80] 

 

[72,74,87] 

[63,78] 

Multiple Sclerosis 

Positive modulation of excitatory transmission; 

Increasing of the BBB permeability; 

Promotion of trans-endothelial recruitment of inflammatory cells; 

Reduction of T-cell activation, during pregnancy. 

[44,63,111] 

[113–115] 

[116] 

[27,119] 

Stroke 
Support of neuronal survival; 

Modulation of cognitive dysfunctions. 

[62] 

[27] 

Brain Tumors 

Releasing of soluble factors and mediation of the signaling machineries related to dysregulated 
cell growth and hypoxic environment development; 

Mediation of the immune system inhibition and development of the responsive environment for 
metastasis; 

Induction of the tumor promoting effects in nearby cells with a prion-like model through to 
shuttle the onco-proteins, ephrins and chemokine receptors, but also DNA, mRNAs, miRNAs and 
other small noncoding RNAs;  

Alteration in gene expression and angiogenesis, through the modulation of endothelial cells; 

Spreading of virus pathologies linked to carcinogenesis. 

[127]  

[133] 

 

 

[12,70,128–132] 

[70,127,129,136] 

[70,134] 
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EV [86] that contain in glycosphingolipids bound the neurotoxic Ab, the microglial-derived 
EVs are involved in the Ab clearance and, lastly, the Ab pathology resulted decreased [34, 
68]. Furthermore, data show that the EVs could contribute to mitochondrial dysfunction, 
spreading neuronal injury in the Alzheimer’s disease brains [87].

Extracellular vesicles involvement has been demonstrated also in the Amyotrophic 
Lateral Sclerosis, a neurodegenerative disease associated to SOD1 gene mutations and 
characterized by motor neurons degeneration. It has been shown that, in the ALS cellular 
models, the spread of the misfolded SOD1 protein could be associated to prion-like 
transmission mechanisms modulated by EVs [88, 89]. An additional misfolded protein in 
the ALS is the TAR DNA-binding protein of 43 kDa (TDP-43), which represents the major 
neuropathological hallmark in the Amyotrophic Lateral Sclerosis brain inclusions [90]. 
Aggregates of the TDP43 are packaged in the EVs and they have detected in the body fluids 
[91]. Extracellular vesicles also enclose the RNA transcripts, such as piRNA, miRNA and 
tRNA, conveyed to the microenvironment and/or to long distances [92-95]. Thus, the EVs 
mediate both inter-cellular communication between cells and trans-cellular communication 
between brain and distant organs [10, 96]. Therefore, the small RNA transcripts, released 
by EVs into biological fluids, exert specific biological effects on target cells, modulating 
gene expressions [97–99]. Deregulation of the miRNAs has been described in the 
neurodegenerative disorders; it has been demonstrated that the miR-132 and the miR-212 
are down-regulated in Alzheimer’s disease and in Fronto-Temporal Dementia brain tissues 
[100–104]. Thus, specific dysregulated microRNAs conveyed by the EVs in the CSF could be 
able to distinguish different neurodegenerative disorders [105, 106]. The whole of these 
surprising evidences remark, in vivo, the multimodal way through which the EVs modulate 
the spread of neuropathological features in different neurodegenerative disorders.

Multiple Sclerosis
Multiple sclerosis (MS) is the most common immune-mediated inflammatory 

demyelinating disease, in the central nervous system, associated to autoreactive lymphocyte 
action leading to inflammation, demyelination and axonal degeneration [107, 108].

In reason of the ascertained role of the extracellular vesicles in immunomodulation, 
their involvement in MS results highly intriguing, representing one of the first neurological 
disorders in which the EVs have been detected. In particular, the involvement of the 
oligodendrocyte-derived EVs and the endothelium-derived EVs in the activation of the CD4+ 
and the CD8+ lymphocytes in the CSF of the MS patients has been described [109, 110]. The 
additional data underlined increased numbers of the myeloid-derived EVs in the CFS from 
the MS patients and proposed their positive modulator role on the excitatory transmission 
[44, 63, 111].

In the plasma samples of the MS patients, higher levels of the endothelium-derived EVs 
have been found and significant increase of the CD31-expressing EVs was evidenced during 
the acute phase in the MS patients; while higher levels of the CD51-expressing EVs were 
found both in remission and exacerbation phases, possibly reflecting the related acute vs 
chronic endothelium dysfunction status [112].

The endothelial-derived-EVs and the platelet-derived EVs result also increased in the 
Multiple sclerosis along with the elevation of CD62p expression, which is described as 
a platelets activation marker. In this contest, it has been described that the extracellular 
vesicles participate to the disruption of the BBB, increasing the permeability of endothelial 
layers in vitro [113–115] and promote the monocyte activation in the plasma, mediating the 
trans-endothelial recruitment of inflammatory cells [116].

Recent data have described the phenotypes of the EVs stemming from different cellular 
lineages (i.e. from leukocytes, monocytes and platelets), both in Multiple Sclerosis patients 
and healthy subjects.  The level of the all EV subsets resulted higher in relapsing-remitting 
patients than in the secondary progressive patients and controls, suggesting that the spreading 
of the extracellular vesicles could reflect the inflammatory vs the chronic degeneration status, 
respectively [117]. It has been described a linear correlation between the higher CSF level of 
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the EVs in the MS patients and the gadolinium enhancing MRI lesions, index of acute phase in 
the natural history of disease [111]. In addition, recent data have described the RNA profile 
of the serum EVs in the MS subjects, characterizing four different peripheral EVs subsets, 
respect to their miRNA contents (i.e. hsa-miR-122-5p, hsa-miR-196b-5p, hsa-miR-301a-3p, 
hsa-miR-532-5p). Those miRNAs identified the MS patients respect to control subjects and 
the upregulation of the EVs conveying in the serum the miRNAs profile mentioned above 
resulted linked to the relapse phase of the disease as well as to a gadolinium enhancement 
on brain magnetic resonance imaging [67, 118]. According to the immunomodulation role 
of the EVs in the MS, several studies have been detected, in the serum of the pregnant MS 
woman, the EVs able to decrease T-cell activation, probably leading the well-known immune 
privileged status in the MS during pregnancy, and suggesting that EVs could modulate the 
diseases status [27, 119–121]. All in all, these findings recall in the mind the possible role of 
the EVs as biomarker of the immune status in the Multiple Sclerosis patients.

Stroke
Stroke is a focal cerebral insult leading to death or severe neurological disability. Discovery 

of the biomarkers for cerebral vascular risk identification and stratification of the stroke 
patient represents a strong focus of interest. In the stroke pathology, the characterization of 
the EV profiles in vivo, could represent a powerful diagnostic and prognostic tool as well as an 
index of therapeutic response. Limited data are available on the use of the EVs as biomarkers 
or as neuroprotective treatment in stroke [27, 122]. A recent study has described the faster 
cognitive decline of stroke patients respect to healthy subjects, beyond than the subacute 
phase, and also to 6 years after the stroke incident was happened [123]. In this case, EVs 
could act as mediators and/or shuttles of functional biomarkers, providing novel potential 
diagnostic approaches for the improvement of the cognitive dysfunction management after 
stroke event [27]. Literature have proposed the mRNA profiles as a potential diagnostic 
biomarkers of the stroke. Nevertheless, the mRNA profiles showed a good sensibility but 
reduced specificity to discriminate other disorders, such as cardiovascular risk factors, 
hypoglycemia, myocardial infarction or hemorrhagic stroke from ischemic stroke [27, 122].

Of note, some differentially regulated miRNAs have been associated to stroke severity 
and outcome in the plasma of patients and in the animal models of stroke [124]. The latter 
showed the involvement of the miR-133b, conveyed by the stromal-derived EVs, in neural 
structure modification [105, 125]. It has also been demonstrated that along with miRNAs, 
also the monitoring of different proteins, such as the MMP-9, the S100β, the ICAM1 and 
the GFAP represent potentially useful diagnostic biomarkers in stroke [122, 126]. The 
investigations of the miRNA, the mRNA or the protein cargoes in the EVs profile could open 
novel diagnostic, prognostic and therapeutic perspectives in stroke [27].

Brain Tumors
Common processes linked to disease initiation and spread (i.e. genetic and epigenetic 

features, hypoxic environment exposure, mutagens and senescence factors) have been 
described for neurodegenerative diseases and brain cancers. Growing studies describe 
a network of the EVs-mediated cellular interactions, which are strictly linked to cancer 
advancement [63]. As matter of fact, the tumor-derived EVs release soluble factors and 
mediate signaling machineries related to dysregulated cell growth and hypoxic environment 
development [127]. Furthermore, proteins as onco-proteins, ephrins and chemokine 
receptors, but also DNA, mRNAs, miRNAs and other small noncoding RNAs are packaged 
into the cancer-derived EVs [12, 128–132]. In line with their immunomodulatory role, the 
extracellular vesicles stemming from primary tumor cells result involved in the immune 
system inhibition as well as in development of the responsive environment for metastasis 
in the cancer machinery [133]. In addition, just as in neurodegenerative diseases, also in 
cancer progression, has been described a prion-like model, in which cancer cells-derived EVs 
induce tumor promoting effects in nearby cells [70]. The viruses-derived EVs, known to be 
linked to certain cancers, such as human papillomavirus (HPV), human immuno- deficiency 
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virus (HIV), and human T cell lymphotropic (T cell leukemia/lymphoma) virus (HTLV)-1, 
could spread the pathology trough an EVs-dependent mechanisms [70, 134]. In this contest, 
glioblastoma-derived EVs promoted the proliferation of cultured cells from which they were 
originated [130, 135] and when they are put into co-cultured with endothelial cells induce 
the alteration in gene expression and angiogenesis, through the modulation of endothelial 
cells [70, 127, 129, 136]. All these evidences, underline the involvement of the EVs in cancer 
physiopathology and their potential use in the prognostic and therapeutic monitoring.

Conclusion

All in all, these data underline that circulating EVs could be proposed as reliable 
biomarkers, representing an intriguing starting point for the development of novel 
therapeutic strategies, based on EV modulation. However, in this scenario, the limit of the 
translation of the EV analysis into the clinical practice come from different highly discussed 
questions, yet not solved, in this field. First of all, the heterogeneous EV nomenclature 
available in current literature determines a real problem when data have to be compared 
and reproduced  [137]. Also, it must be taken into account that the EV detection presents 
enormous technological issues and also their biological roles are nowadays not fully 
characterized [1, 19]. In particular, the ideal method should detect EV larger than 50 nm 
and larger directly from fresh body fluids. It has to rely on a technique able to determine the 
concentration, as well as the phenotype of EVs being able to identify also the smallest EV 
compartment [19]. Therefore, further efforts need to be planned to improve those lacking 
points, in order to measure the real power of the extracellular vesicles as a novel tool in 
neurological diseases.
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