22 research outputs found

    Enhanced thermal emittance of space radiators by ion-discharge chamber texturing

    Get PDF
    The discharge chamber of a 30-cm argon ion source was successfully used to texture potential space radiator materials for the purpose of obtaining values of thermal emittance greater than 0.85 at 700 and 900 K. Some samples were also treated in acid prior to texturing. To evaluate the durability of the textured materials to atomic oxygen, samples were exposed to an RF air plasma environment. The spectral emittance between 2.0 anf 15.0 microns was measured before and after the textured materials were exposed to the plasma asher. The results indicate that copper with extremely high values of emittance after texturing (0.978 and 0.983) at 700 and 900 K, respectively,did not change its values of emittance after ashing, whereas the emittance of stainless steel fell below 0.85 after ashing. These data, along with scanning electron photomicrographs, and the results of texturing and ashing titanium and Nb(1)Zr are presented

    Ion beam treatment of potential space materials at the NASA Lewis Research Center

    Get PDF
    Ion source systems in different configurations, have been used to generate unique morphologies for several NASA space applications. The discharge chamber of a 30 cm ion source was successfully used to texture potential space radiator materials for the purpose of obtaining values of thermal emittance greater than 0.85 at 700 and 900 K. High absorptance surfaces were obtained using ion beam seed texturing, for space radiator materials that were flown on the Long Duration Exposure Facility (LDEF) for 5.8 years in space. An ion source discharge chamber was also used to develop electrode surfaces with suppressed secondary electron emission characteristics for use in collectors in microwave amplifier traveling wave tubes. This was accomplished by sputtering textured carbon onto copper as well as texturing copper using tantalum and molybdenum as sacrificial texture inducing seeding materials. In a third configuration, a dual ion beam system was used to generate high transmittance diamondlike carbon (DLC) films

    Diamondlike carbon protective coatings for optical windows

    Get PDF
    Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns

    The emittance of space radiator materials measured at elevated temperatures

    Get PDF
    The spectral emittances of textured space radiator materials between 1.7 and 14.7 micrometer have been evaluated at room temperature and elevated temperature (630 C) in air. Heating in air caused a permanent increase in spectral emittance for all materials tested: HCl/ion beam textured 304 stainless steel, untextured Ti (6 percent Al, 4 percent V), and sandblasted Ti (6 percent Al, 4 percent V). Changes in the surface chemistry and/or surface morphology of these materials were also observed. Elevated temperature spectral emittance was measured in an argon atmosphere and compared to the measurements in air. Similarity between the room temperature and elevated temperature spectral emittance measurements was also investigated, and limited agreement was found

    Oxidation protection coatings for polymers

    Get PDF
    A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about four volume percent polymer to provide flexibility

    The effect of the near earth micrometeoroid environment on a highly reflective mirror surface

    Get PDF
    A resurgence of interest in placing large solar concentrator solar dynamic systems in space for power generation has brought up again a concern for maintaining the integrity of the optical properties of highly specular reflecting surfaces in the near earth space environment. One of the environmental hazards needing evaluation is the micrometeoroid environment. It has been shown that highly reflective polished metals and thin film coatings degrade when exposed to simulated micrometeoroids in the lab. At NASA-Lewis, a shock tube was used to simulate the phenomenon of micrometeoroid impact by accelerating micron sized particles to hypervelocities. Any changes in the optical properties of surfaces exposed to this impact were then evaluated. The degradation of optical properties of polished metals and thin metallic films after exposure to simulated micrometeoroids was determined as a function of impacting kinetic energy area of the particles. A calibrated sensor was developed to not only detect the micrometeoroid environment, but also to evaluate the degradation of the optical properties of thin aluminum films in space. Results of the simulation are presented and discussed

    Optical and scratch resistant properties of diamondlike carbon films deposited with single and dual ion beams

    Get PDF
    Amorphous diamondlike carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance and frictional and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries

    Total hemispherical emittance measured at high temperatures by the calorimetric method

    Get PDF
    A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements (plus or minus 5 percent). The probable error of the CVE measurements was typically less than 1 percent

    Heat exchanger for electrothermal devices

    Get PDF
    An improved electrothermal device is disclosed. An electrothermal thruster utilizes a generally cylindrical heat exchanger chamber to convert electricity to heat which raises the propellant temperature. A textured, high emissivity heat element radiatively transfers heat to the inner wall of this chamber that is ion beam morphologically controlled for high absorptivity. This, in turn, raises the temperature of a porous heat exchanger material in an annular chamber surrounding the cylindrical chamber. Propellant gas flows through the annular chamber and is heated by the heat exchanger material

    Flexible fluoropolymer filled protective coatings

    Get PDF
    Metal oxide films such as SiO2 are known to provide an effective barrier to the transport of moisture as well as gaseous species through polymeric films. Such thin film coatings have a tendency to crack upon flexure of the polymeric substrate. Sputter co-deposition of SiO2 with 4 to 15 percent fluoropolymers was demonstrated to produce thin films with glass-like barrier properties that have significant increases in strain to failure over pure glass films which improves their tolerance to flexure on polymeric substrates. Deposition techniques capable of producing these films on polymeric substrates are suitable for durable food packaging and oxidation/corrosion protection applications
    corecore