111 research outputs found

    Signals of demographic expansion in Drosophila virilis

    Get PDF
    BACKGROUND: The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonizations, can be inferred. Drosophila virilis is a cosmopolitan species belonging to the virilis group, where divergence times between different phylads go back to the early Miocene. We analysed mitochondrial DNA sequence variation among 35 Drosophila virilis strains covering the species' range in order to detect demographic events that could be used to understand the present characteristics of the species, as well as its differences from other members of the group. RESULTS: Drosophila virilis showed very low nucleotide diversity with haplotypes distributed in a star-like network, consistent with a recent world-wide exponential expansion possibly associated either with domestication or post-glacial colonization. All analyses point towards a rapid population expansion. Coalescence models support this interpretation. The central haplotype in the network, which could be interpreted as ancestral, is widely distributed and gives no information about the geographical origin of the population expansion. The species showed no geographic structure in the distribution of mitochondrial haplotypes, in contrast to results of a recent microsatellite-based analysis. CONCLUSION: The lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, although this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available. The particular behavioural traits of this species, including weak species-discrimination and intraspecific mate choice exercised by the females, can be understood from this perspective

    Signals of demographic expansion in Drosophila virilis

    Get PDF
    Background. The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonizations, can be inferred. Drosophila virilis is a cosmopolitan species belonging to the virilis group, where divergence times between different phylads go back to the early Miocene. We analysed mitochondrial DNA sequence variation among 35 Drosophila virilis strains covering the species' range in order to detect demographic events that could be used to understand the present characteristics of the species, as well as its differences from other members of the group. Results. Drosophila virilis showed very low nucleotide diversity with haplotypes distributed in a star-like network, consistent with a recent world-wide exponential expansion possibly associated either with domestication or post-glacial colonization. All analyses point towards a rapid population expansion. Coalescence models support this interpretation. The central haplotype in the network, which could be interpreted as ancestral, is widely distributed and gives no information about the geographical origin of the population expansion. The species showed no geographic structure in the distribution of mitochondrial haplotypes, in contrast to results of a recent microsatellite-based analysis. Conclusion. The lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, although this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available. The particular behavioural traits of this species, including weak species-discrimination and intraspecific mate choice exercised by the females, can be understood from this perspective.peerReviewe

    Multiple nuclear pseudogenes of mitochondrial cytochrome b in Ctenomys (Caviomorpha, Rodentia) with either great similarity to or high divergence from the true mitochondrial sequence

    Get PDF
    A fragment of the mitochondrial cytochrome b gene was studied in 13 species of the South American fossorial rodent Ctenomys using PCR with 'universal' primers and DNA sequencing after cloning: Five different groups of sequences were found, one of which corresponds to the functional mitochondrial gene (mt). The other four groups (A, B, C and D) were believed to be nuclear pseudogenes. Sequences A-C were highly divergent from the mt sequences and included substitutions, deletions and insertions such that they could not possibly have coded a functional protein. They all shared a common insertion between positions 15055 and 15056 suggestive of a common origin, although the A, B and C sequences otherwise differed greatly from each other. The D sequences also could not have been functional on the basis of nucleotide sequence, but the differences with the mt sequences were far more subtle and in a more limited study the D sequences could easily have been classified as a true mtDNA sequence. It is suggested that there were two transfers of the cytochrome b gene from the mitochondrion to the nucleus; the first leading to sequences A-C and the second to the D sequence. Subsequent to transfer, a sequence of duplications within the nucleus appears to have generated the full range of pseudogenes that are observed. This study adds to other recent observations suggesting the frequent transfer of mtDNA sequences to the nucleus and reinforces the necessity of great care in interpreting PCR-generated sequences, particularly those produced with universal primers. There are now data from several species of mammals and birds relating to PCR-generated nuclear copies of cytochrome b, which we review.Facultad de Ciencias Veterinaria

    Mitochondrial variability in the D-loop of four equine breeds shown by PCR-SSCP analysis

    Get PDF
    A fragment of 466 base pairs from a highly variable peripheral region of the mitochondrial D-loop of horses was amplified and analyzed by single stranded conformational polymorphism (SSCP). Fourteen distinct SSCP variants were detected in 100 horses belonging to four breeds (Arabian, ARB; Thoroughbred, TB; Argentinian Creole, ARC; and Peruvian Paso from Argentina, PPA). Each breed showed four to eight SSCP variants, many of which were shared between two or three of the studied breeds. Arabian horses were the most variable (eight variants), with three variants unique to the breed. PPA and ARC showed two and one characteristic SSCP variants, respectively, while TB shared all its variants with at least one of the other breeds. An analysis based on the presence/absence of the variants revealed a closer relationship between PPA and TB, which was not completely unexpected considering the mixed ancestry of the PPA mares. The results also confirm the efficiency of SSCP to detect variability in horse mitochondrial DNA.Instituto de Genética Veterinari

    Venado de las pampas: definir medidas de conservación apoyados en los datos que brindan sus moléculas

    Get PDF
    A partir de abril de 2008, en el marco de una beca doctoral otorgada por el CONICET, se comenzó a desarrollar el trabajo ‘Genética aplicada a la conservación de especies amenazadas y su hábitat. Estudio del aguará guazú (Chrysocyon brachyurus) y del venado de las pampas (Ozotoceros bezoarticus) en dos humedales para la realización de un diagnóstico ambiental’. El mismo se lleva a cabo en el “Laboratorio de Herramientas Moleculares del Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’” y tiene por objetivo analizar el estado de variabilidad genética de dos especies de mamíferos amenazados: Aguará Guazú (Chrysocyon brachyurus, Illiger, 1815) y Venado de las Pampas (Ozotoceros bezoarticus, Linné, 1758), para determinar la situación de conservación de las poblaciones, y proponer medidas de manejo y conservación de acuerdo a la información obtenida. La colaboración de los diferentes grupos de trabajo involucrados en el estudio y la conservación de estas especies es un punto focal para llevar adelante esta iniciativa.Fil: Raimondi, Vanina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Mirol, Patricia Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin

    Хромосомы и видообразование у туко-туко (Ctenomys, Hystricognathi, Rodentia)

    Get PDF
    Tuco-tucos, South American rodents of the genus Ctenomys represent an interesting model of speciation. Their strict territorial and solitary life under the earth, vast but highly fragmented habitats, low migration activity were the causes of their very fast radiation. About 60 species of this genus have been described. They are found in a variety of habitats, from the mountains of the Andes to the coastal dunes of the Atlantic, from humid steppes of Pampas to dry deserts of Chaco. Tuco-tucos have a very high level of chromosomal polymorphism and polytypism based on Robertsonian and whole-arm reciprocal translocations and inversions, and can therefore be used to test different versions of chromosomal speciation hypothesis. The classic version of this hypothesis emphasizes the sterility of the hybrids, due to incorrect or incomplete chromosome synapsis in heterozygotes for rearrangements, germ cells death, chromosome nondisjunction and the generation of unbalanced gametes. The modern version of chromosomal speciation hypothesis suggests that the reduction of gene flow across chromosomal hybrid zones is due to the suppression of recombination in hybrids around the break points of rearrangements distinguishing the parental species. Field studies have not revealed strong negative effects of chromosomal heterozygosity on the fitness of the carriers. These results cast doubt on the validity of the classic version of the hypothesis. Analysis of chromosome behavior in the meiotic prophase in the chromosomal heterozygotes revealed significant changes in the frequency and distribution of recombination: crossingover suppression around the breakpoint and chiasma distalization. These changes can modulate the flow of genes between chromosomal races and amplify the divergence which has arisen due to spatial isolation. These data confirm the recombinational model of chromosomal speciation.Fil: Torgasheva, Anna A.. Novosibirsk State University; Rusia. Institute of Cytology and Genetics; RusiaFil: Savchenko, Ekaterina. Institute of Cytology and Genetics; RusiaFil: Gomez Fernandez, Maria Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Mirol, Patricia Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Borodin, Pavel M.. Novosibirsk State University; Rusia. Institute of Cytology and Genetics; Rusi

    Influence of environmental heterogeneity on the distribution and persistence of a subterranean rodent in a highly unstable landscape

    Get PDF
    O.E.G was supported by the Marine Alliance for Science and Technology for Scotland.In this study we combine information from landscape characteristics, demographic inference and species distribution modelling to identify environmental factors that shape the genetic distribution of the fossorial rodent Ctenomys. We sequenced the mtDNA control region and amplified 12 microsatellites from 27 populations distributed across the Iberá wetland ecosystem. Hierarchical Bayesian modelling was used to construct phylogenies and estimate divergence times. We developed species distribution models to determine what climatic variables and soil parameters predicted species presence by comparing the current to the historic and predicted future distribution of the species. Finally, we explore the impact of environmental variables on the genetic structure of Ctenomys based on current and past species distributions. The variables that consistently correlated with the predicted distribution of the species and explained the observed genetic differentiation among populations included the distribution of well-drained sandy soils and temperature seasonality. A core region of stable suitable habitat was identified from the Last Interglacial, which is projected to remain stable into the future. This region is also the most genetically diverse and is currently under strong anthropogenic pressure. Results reveal complex demographic dynamics, which have been in constant change in both time and space, and are likely linked to the evolution of the Paraná River. We suggest that any alteration of soil properties (climatic or anthropic) may significantly impact the availability of suitable habitat and consequently the ability of individuals to disperse. The protection of this core stable habitat is of prime importance given the increasing levels of human disturbance across this wetland system and the threat of climate change.PostprintPeer reviewe
    corecore