478 research outputs found
Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks
Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability
Objective assessment of region of interest-aware adaptive multimedia streaming quality
Adaptive multimedia streaming relies on controlled
adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication
link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are
perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality
E³DOAS: balancing QoE and energy-saving for multi-device adaptation in future mobile wireless video delivery
Smart devices (e.g. smartphones, tablets, smart-home devices, etc.) have become important companions to most people in their daily activities, and are very much used for multimedia content exchange (i.e. video sharing, real-time/non-real-time multimedia streaming), contributing to the exponential increase in mobile traffic over the current wireless networks. While the next generation mobile networks will provide higher capacity than the current 4G systems, the network operators will face important challenges associated with the outstanding increase of both video traffic and user expectations in terms of their levels of perceived quality or Quality of Experience (QoE).
Furthermore, the heterogeneity of mobile devices (e.g. screen resolution, battery life, hardware performance) also impacts severely the end-user QoE. In this context, this paper proposes an Evolved QoE-aware Energy-saving Device-Oriented Adaptive Scheme (E3DOAS ) for mobile multimedia delivery over future wireless networks. E3DOAS makes use of a coalition game-based rate allocation strategy within the multi-device heterogeneous environment, and optimizes the trade-off between the end-user perceived quality of the multimedia delivery and the mobile device energy-saving. Testing has involved a prototype of E3DOAS, a crowd-sourcing-based QoE assessment method to model non-reference perceptual video quality, and an energy measurement testbed introduced to collect power consumption parameters of the mobile devices. Simulation-based performance evaluation showed how
E3DOAS outperformed other state of the art multimedia adaptive solutions in terms of energy saving, end-to-end Quality of Service (QoS) metrics and end-user perceived quality
OFLoad: An OpenFlow-based dynamic load balancing strategy for datacenter networks
The latest tremendous growth in the Internet traffic has determined the entry into a new era of mega-datacenters, meant to deal with this explosion of data traffic. However this big data with its dynamically changing traffic patterns and flows might result in degradations of the application performance eventually affecting the network operators’ revenue. In this context there is a need for an intelligent and efficient network management system that makes the best use of the available bisection bandwidth abundance to achieve high utilization and performance. This paper proposes OFLoad, an OpenFlow-based dynamic load balancing strategy for datacenter networks that enables the efficient use of the network resources capacity. A real experimental prototype is built and the proposed solution is compared against other solutions from the literature in terms of load-balancing. The aim of OFLoad is to enable the instant configuration of the network by making the best use of the available resources at the lowest cost and complexity
Una excursió per muntanyes i valls : Gerdhard Ertl i la química de superfícies
El Nobel de Química del 2007 va premiar el treball de Gerdhard Ertl sobre química de superfícies. S'exposen alguns dels seus resultats i com van ser possibles, així com la seva aplicació en catàlisis heterogènies de processos importants
User quality of experience of mulsemedia applications
User Quality of Experience (QoE) is of fundamental importance in multimedia applications and has been extensively studied for decades. However, user QoE in the context of the emerging multiple-sensorial media (mulsemedia) services, which involve different media components than the traditional multimedia applications, have not been comprehensively studied. This article presents the results of subjective tests which have investigated user perception of mulsemedia content. In particular, the impact of intensity of certain mulsemedia components including haptic and airflow on user-perceived experience are studied. Results demonstrate that by making use of mulsemedia the overall user enjoyment levels increased by up to 77%
Organizaciones matemáticas y didácticas en torno al objeto de "límite de función" : una propuesta metodológica para el análisis
Our research falls within the general field of the analysis of the teacher's activity and focuses on the specific case of teaching the concept of "limit to the function" in the Spanish secondary school system. Using the anthropological focus of didactics (Chevallard, 1998) as a general theoretical frame, we propose an investigative methodology for the analysis of mathematical organizations recreated by the teacher in the classroom in collaboration with his/her pupils and the respective didactic organizations that allow their reconstruction
User Quality of Experience-aware Multimedia Streaming over Wireless Home Area Network
For multimedia streaming over wireless networks, there is a trade-off between the capacity of the wireless links and the end-user perceived-quality, which can be affected by the compression scheme used, content characteristics and adaptation algorithm (if any). In this paper, this trade-off is investigated for streaming various motion content multimedia over an IEEE 802.11b-based Wireless-Home Area Network using the Quality-Oriented Adaptation Scheme (QOAS). QOAS performance is compared to that of a non-adaptive scheme when using MPEG-2 and MPEG-4 encoding in terms of average end-user perceived quality, number of streaming sessions concurrently supported, loss rate, delay, jitter and total throughput. Simulation results show that by using QOAS and MPEG-4 encoded streams a much higher number of concurrent streams are supported at an average quality above “good” level on the ITU-T five-point quality scale in comparison with other situations. In this case all the other streaming performance parameters were also significantly better
Quality-oriented adaptation scheme for multimedia streaming in local broadband multi-service IP networks
The research reported in this thesis proposes, designs and tests the Quality-Oriented Adaptation Scheme (QOAS), an application-level adaptive scheme that offers high quality
multimedia services to home residences and business premises via local broadband IP-networks in the presence of other traffic of different types. QOAS uses a novel client-located grading scheme that maps some network-related parameters’ values, variations and variation patterns (e.g. delay, jitter, loss rate) to application-level scores that describe the quality of delivery. This grading scheme
also involves an objective metric that estimates the end-user perceived quality, increasing its effectiveness. A server-located arbiter takes content and rate adaptation decisions based on these quality scores, which is the only information sent via feedback by the clients.
QOAS has been modelled, implemented and tested through simulations and an instantiation of it has been realized in a prototype system. The performance was assessed in terms of estimated end-user perceived quality, network utilisation, loss rate and number of customers served by a fixed infrastructure. The influence of variations in the parameters used by QOAS and of the networkrelated
characteristics was studied. The scheme’s adaptive reaction was tested with background traffic of different type, size and variation patterns and in the presence of concurrent multimedia streaming processes subject to user-interactions. The results show that the performance of QOAS
was very close to that of an ideal adaptive scheme. In comparison with other adaptive schemes QOAS allows for a significant increase in the number of simultaneous users while maintaining a good end-user perceived quality. These results are verified by a set of subjective tests that have been performed on viewers using a prototype system
- …
