6 research outputs found

    Lactococcin B Is Inactivated by Intrinsic Proteinase PrtP Digestion in Lactococcus lactis subsp. lactis BGMN1-501

    Get PDF
    In our previous study we demonstrated that proteinase PrtP is able to impair bacteriocin LcnB activity, despite being produced by the same organism and encoded by the same plasmid. However, precise mechanism of this action, i.e., the exact cleavage site within LcnB bacteriocin, as well as its effect on antimicrobial activity of the resulting peptide remained vague. Here we further explored the interplay between these two proteins and defined, using mass spectrometry, that this unusual hydrolysis indeed occurs in vivo, between the sixth and seventh amino acid on the N terminus of LcnB. To address whether the cleaved form of LcnB retains any level of activity, both recombinant and chemically synthesized variant of truncated LcnB were engineered and produced, but demonstrated no antimicrobial activity. When LcnB was recombinantly overexpressed and subjected to PrtP digestion, the change in its antimicrobial activity was monitored and the degradation products analyzed with reverse-phase high-pressure liquid chromatography. The results confirmed the inactivity of the truncated LcnB and additionally corroborated the PrtP cleavage site in LcnB bacteriocin. In addition, it was demonstrated that, once truncated, LcnB is not able to bind its receptor and is susceptible to additional hydrolysis. This is the first report on proteolytic inactivation of bacteriocins inside the same bacterial host

    Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials

    Get PDF
    Bacteria active against multi-drug resistant pathogens, isolated by direct selection of colonies from clover silage samples, produce zones of inhibition against two Gram-negative (Klebsiella pneumoniae Ni9 and Pseudomonas aeruginosa MMA83) and two Gram-positive (Staphylococcus aureus ATCC25923 and Listeria monocytogenes ATCC19111) pathogens. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 produced the largest zones of inhibition against all four pathogens when grown in LB broth with aeration at 37 degrees C. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 were identified as Brevibacillus laterosporus and pulsed field gel electrophoresis and extracellular protein profiles showed that three different strains (BGSP7, BGSP9 and BGSP11) were isolated. A semi-native SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) gel overlay assay showed that BGSP7 and BGSP9 produce small antimicrobial molecules of about 1.5 kDa, while BGSP11 produces antimicrobial molecules of 1.5 and 6 kDa active against S. aureus ATCC25923. Amino acid analysis of two antimicrobial molecules (1583.73 Da; from BGSP7 and 1556.31 Da; from BGSP11) revealed that they have a similar composition and differ only by virtue of the presence of a methionine which is present only in BGSP11 molecule. Genome sequencing of the three isolates revealed the presence of gene clusters associated with the production of non-ribosomally synthesized peptides (brevibacillin, bogorol, gramicidin S, plipastatin and tyrocin) and bacteriocins (laterosporulin, a lactococcin 972-like bacteriocin, as well as putative linocin M18, sactipeptide, UviB and lantipeptide-like molecules). Ultimately, the purification of a number of antimicrobial molecules from each isolate suggests that they can be considered as potent biocontrol strains that produce an arsenal of antimicrobial molecules active against Gram-positive and Gram-negative multi-resistant pathogens, fungi and insects

    Decompressive laparotomy with temporary abdominal closure versus percutaneous puncture with placement of abdominal catheter in patients with abdominal compartment syndrome during acute pancreatitis: background and design of multicenter, randomised, controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of abdominal compartment syndrome (ACS) in patients with severe acute pancreatitis (SAP) has a strong impact on the course of disease. Number of patients with this complication increases during the years due more aggressive fluid resuscitation, much bigger proportion of patients who is treated conservatively or by minimal invasive approach, and efforts to delay open surgery. There have not been standard recommendations for a surgical or some other interventional treatment of patients who develop ACS during the SAP. The aim of DECOMPRESS study was to compare decompresive laparotomy with temporary abdominal closure and percutaneus puncture with placement of abdominal catheter in these patients.</p> <p>Methods</p> <p>One hundred patients with ACS will be randomly allocated to two groups: I) decompresive laparotomy with temporary abdominal closure or II) percutaneus puncture with placement of abdominal catheter. Patients will be recruited from five hospitals in Belgrade during two years period. The primary endpoint is the mortality rate within hospitalization. Secondary endpoints are time interval between intervention and resolving of organ failure and multi organ dysfunction syndrome, incidence of infectious complications and duration of hospital and ICU stay. A total sample size of 100 patients was calculated to demonstrate that decompresive laparotomy with temporary abdominal closure can reduce mortality rate from 60% to 40% with 80% power at 5% alfa.</p> <p>Conclusion</p> <p>DECOMPRESS study is designed to reveal a reduction in mortality and major morbidity by using decompresive laparotomy with temporary abdominal closure in comparison with percutaneus puncture with placement of abdominal catheter in patients with ACS during SAP.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: NTC00793715</p

    Of Fire and Smoke Plumes, Polarimetric Radar Characteristics

    No full text
    Weather surveillance radars routinely detect smoke of various origin. Of particular significance to the meteorological community are wildfires in forests and/or prairies. For example, one responsibility of the National Weather Service in the USA is to forecast fire outlooks as well as to monitor wildfire evolution. Polarimetric variables have enabled relatively easy recognitions of smoke plumes in data fields of weather radars. Presented here are the fields of these variables from smoke plumes caused by grass fire, brush fire, and forest fire. Histograms of polarimetric data from plumes contrast these cases. Most of the data are from the polarimetric Weather Surveillance Radar 1988 Doppler (WSR-88D aka NEXRAD, 10 cm wavelength); hence, the wavelength does not influence these comparisons. Nevertheless, in one case, simultaneous observations of a plume by the operational Terminal Doppler Weather Radar (TDWR, 5 cm wavelength) and a WSR-88D is used to infer backscattering characteristic and, hence, sizes of dominant contributors to the returns. To interpret these measurements, Computational Electromagnetics (CEM) tools are applied. For one wildfire from Oklahoma, radar and satellite (GOES-16, Geostationary Operational Environmental Satellite) images are analyzed. The case demonstrates a potential to forecast fire intensification caused by a very rapid cold front. Finally, we suggest a possible way to extract the smoke plume return from the class of nonmeteorological scatterers
    corecore