736 research outputs found

    Light capsules shaped by curvilinear meta-surfaces

    Get PDF
    We propose a simple yet efficient method for generating in-plane hollow beams with a nearly-full circular light shell without the contribution of backward propagating waves. The method relies on modulating the phase in the near field of a centro-symmetric optical wavefront, such as that from a high-numericalaperture focused wave field. We illustrate how beam acceleration may be carried out by using an ultranarrow non-flat meta-surface formed by engineered plasmonic nanoslits. A mirrorsymmetric, with respect to the optical axis, circular caustic surface is numerically demonstrated that can be used as an optical bottle

    Stochastic theory of lineshape broadening in quasielastic He atom scattering with interacting adsorbates

    Get PDF
    The activated surface diffusion of interacting adsorbates is described in terms of the so-called interacting single adsorbate approximation, which is applied to the diffusion of Na atoms on Cu(001) for coverages up to 20% in quasielastic He atom scattering experiments. This approximation essentially consists of solving the standard Langevin equation with two noise sources and frictions: a Gaussian white noise accounting for the friction with the substrate, and a white shot noise characterized by a collisional friction simulating the adsorbate-adsorbate collisions. The broadenings undergone by the quasielastic peak are found to be in very good agreement with the experimental data reported at two surface temperatures 200 and 300 K.Comment: 6 pages, 3 figure

    Oblique surface waves at an interface of metal-dielectric superlattice and isotropic dielectric

    Full text link
    We investigate the existence and the dispersion characteristics of surface waves that propagate at an interface between metal-dielectric superlattice and isotropic dielectric. Within the long wavelength limit, when the effective-medium approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into the contact with semi-infinite dielectric, a new type of surface modes can appear. The propagation of such modes obliquely to the optical axes occurs under favorable conditions that regard thicknesses of the layers, as well as the proper choice of dielectric permittivity of the constituent materials. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to the field non-locality and consequently to the failure of the effective-medium approximation.Comment: 4 pages, 3 figure
    corecore