94 research outputs found

    Expression profile of plasticity-related mRNAs in the cortex and hippocampus of young and aged rats and of 3xTg and wild type mice

    Full text link
    De récents travaux ont mis en évidence que des dysfonctionnements dans l’expression de gènes impliqués dans la plasticité synaptique contribuent aux déclins cognitifs qu’on observe chez les gens âgés et à la progression de la maladie d’Alzheimer. Notre étude avait comme objectif d’étudier le profil d’expression d’ARNm spécifiques impliqués dans la plasticité synaptique chez des rats jeunes et âgés et chez des souris transgéniques 3xTg et WT. Des expériences en qRT-PCR ont été effectuées dans des extraits de cortex et d’hippocampe de rats jeunes et âgés et de souris 3xTg et WT, respectivement. Les résultats ont démontré une augmentation significative de l’expression d’ARNm MAP1B, Stau2, BDNF, CREB et AGO2 principalement dans l’hippocampe (régions CA1-CA3) des souris 3xTg comparé aux souris WT. Une diminution significative a également été observée pour l’ARNm αCaMKII dans le cortex des souris 3xTg comparé aux souris WT. Contrairement à ces observations, aucun changement n’a été observé pour l’expression de gènes impliqués dans la plasticité synaptique chez les rats âgés comparé aux rats jeunes. Ces résultats démontrent qu’un dysfonctionnement existe réellement au début de la maladie d’Alzheimer dans l’expression de gènes spécifiques impliqués dans la plasticité synaptique et contribue potentiellement à la progression de la maladie en engendrant un déséquilibre entre la LTP et la LTD. De plus, les différences d’expressions sont particulièrement observées dans l’hippocampe (régions CA1-CA3) ce qui est consistant avec les études sur la progression de la maladie d’Alzheimer puisqu’il est connu que la région CA1 de l’hippocampe est la plus vulnérable à l’apparition de la maladie. Ces résultats permettent une meilleure compréhension des événements moléculaires qui deviennent dérégulés à l’apparition de la maladie d’Alzheimer.Recent work has demonstrated that dysregulations in the expression profile of plasticity-related genes in specific brain regions contribute to age-related cognitive decline and Alzheimer’s disease. The aim of this study was to determine the expression profile of a subset of plasticity-related mRNAs in different regions of the brain of young and aged rats as well as 3xTg and wild type (WT) mice. qRT-PCR experiments were performed in extracts of cortex and hippocampus of young and aged rats and of 3xTg and WT mice, respectively. Results demonstrated significant increases in the expression of MAP1B, Stau2, CREB, BDNF, and AGO2 mRNAs, especially in the hippocampus (CA1-CA3 fields) of 3xTg mice compared to WT mice. A significant decrease was also observed in the expression of αCaMKII mRNA in the cortex of 3xTg mice compared to WT mice. On the other hand, no significant changes were observed in the expression of plasticity-related genes in the hippocampus of aged rats compared to young rats. These results confirm that alterations in gene expression occur at the onset of AD and possibly contribute to the progression of the disease by causing an imbalance between long-term potentiation and long-term depression. In addition, patterns of significant altered gene expression, especially in the hippocampus (CA1-CA3 fields) of 3xTg mice are consistent with the progression of AD whereby the hippocampus (CA1 region) is most vulnerable at the onset of the disease. These results provide a better understanding of the molecular events that first become disturbed in AD

    Molecular phylogeny of Trametes and related genera, and description of a new genus Leiotrametes

    Get PDF
    A phylogenetic analysis of and related taxa is proposed, based on a wide sampling of temperate and tropical species. Concatenate sequences of ribosomal DNA (ITS1-5.8S-ITS2) and RPB2 gene from mycelia cultures were analyzed by Maximum Likelihood and Bayesian methods, whilst morphological features were documented from the corresponding herbarium vouchers. Congruent results were obtained from analyses of ribosomal LSU sequences downloaded from Genbank. The Bayesian analysis of ITS + RPB2 sequences gave the best resolution for the phylogenetic reconstructions and revealed the existence of three main lineages in the -clade: 1) a monospecific lineage represented by 2) a lineage including the genus in its traditional sense and several species usually classified in the genus (, , , ) & 3) a lineage corresponding to the core genus , including type species of , and . The presence of a pseudostipe, aspect and structure of the abhymenial surface, colour change with 5% aqueous solutions of potassium hydroxide and topography of pigments on skeletal hyphae gave relevant morphological support to these clades. When the structure of the hymenial surface, presence of a black line below the tomentum and color of context (except for genus ) usually used in traditional polypore-classifications did not reveal any phylogenetic significance. A partial systematic arrangement of the clade is proposed, with the introduction of a new genus: Welti & Courtec. .. Two new combinations: (Berk.) Welti & Courtec. . and (Berk.) Welti & Courtec. . are proposed

    Emissions of Polycyclic Aromatic Hydrocarbon Particulates from combustion of different fuels

    Get PDF
    The use of biomass as fuel for combustion allows partial replacement of fossil fuels and the reduction of fossil carbon dioxide emissions. Nevertheless, combustion of biomass waste may generate toxic pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) whose production is related to the combustion temperature, oxygen consumptionand origin of the biomass fuel. In the present study, experimental protocols for biomass combustion and analytical quantification of PAHs were carried out. Six types of fuel were burned in a tubular reactor: two bio-solids dried differently (air drying and fry drying), oil-shale, used cooking oil (for recycling) and two types of woody biomass (oak and beech). The combustion tests were performed at 850°C with fixed bed samples weighing about 1 g. The identification and quantification of PAHs in the particulate phase were performed by ultrasonic extraction followed by high-resolution gas chromatography coupled to low-resolution mass spectrometry. The 16 main EPA-classified PAHs have been identified. The results show that emissions of fry-dried sludge are approximately 5000 μg g-1, thus 10 times greater than those of wood and 10 times lower than those of used cooking oils. Toxicity of the particulate phase was essentially due to benzo(a)pyrene and benzo(b)fluoranthene

    Molecular Composition of Staufen2-Containing Ribonucleoproteins in Embryonic Rat Brain

    Get PDF
    Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Numerous mRNA-binding and regulatory proteins within mRNPs finely regulate the fate of bound-mRNAs. Their specific combination defines different types of mRNPs that in turn are related to specific synaptic functions. One of these mRNA-binding proteins, Staufen2 (Stau2), was shown to transport dendritic mRNAs along microtubules. Its knockdown expression in neurons was shown to change spine morphology and synaptic functions. To further understand the molecular mechanisms by which Stau2 modulates synaptic function in neurons, it is important to identify and characterize protein co-factors that regulate the fate of Stau2-containing mRNPs. To this end, a proteomic approach was used to identify co-immunoprecipitated proteins in Staufen2-containing mRNPs isolated from embryonic rat brains. The proteomic approach identified mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70), proteins of the cytoskeleton (α- and β-tubulin) and RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70 is directly bound to Stau2 and this interaction is regulated by ATP. PABPC1 and YB1 proteins formed puncta in dendrites of embryonic rat hippocampal neurons. However, they poorly co-localized with Stau2 in the large dendritic complexes suggesting that they are rather components of Stau2-containing mRNA particles. All together, these results represent a further step in the characterization of Stau2-containing mRNPs in neurons and provide new tools to study and understand how Stau2-containing mRNPs are transported, translationally silenced during transport and/or locally expressed according to cell needs
    • …
    corecore