7 research outputs found

    Toward an Extended Definition of Major Depressive Disorder Symptomatology: Digital Assessment and Cross-validation Study.

    Get PDF
    BACKGROUND: Diagnosing major depressive disorder (MDD) is challenging, with diagnostic manuals failing to capture the wide range of clinical symptoms that are endorsed by individuals with this condition. OBJECTIVE: This study aims to provide evidence for an extended definition of MDD symptomatology. METHODS: Symptom data were collected via a digital assessment developed for a delta study. Random forest classification with nested cross-validation was used to distinguish between individuals with MDD and those with subthreshold symptomatology of the disorder using disorder-specific symptoms and transdiagnostic symptoms. The diagnostic performance of the Patient Health Questionnaire-9 was also examined. RESULTS: A depression-specific model demonstrated good predictive performance when distinguishing between individuals with MDD (n=64) and those with subthreshold depression (n=140) (area under the receiver operating characteristic curve=0.89; sensitivity=82.4%; specificity=81.3%; accuracy=81.6%). The inclusion of transdiagnostic symptoms of psychopathology, including symptoms of depression, generalized anxiety disorder, insomnia, emotional instability, and panic disorder, significantly improved the model performance (area under the receiver operating characteristic curve=0.95; sensitivity=86.5%; specificity=90.8%; accuracy=89.5%). The Patient Health Questionnaire-9 was excellent at identifying MDD but overdiagnosed the condition (sensitivity=92.2%; specificity=54.3%; accuracy=66.2%). CONCLUSIONS: Our findings are in line with the notion that current diagnostic practices may present an overly narrow conception of mental health. Furthermore, our study provides proof-of-concept support for the clinical utility of a digital assessment to inform clinical decision-making in the evaluation of MDD

    A machine learning algorithm to differentiate bipolar disorder from major depressive disorder using an online mental health questionnaire and blood biomarker data

    Get PDF
    The vast personal and economic burden of mood disorders is largely caused by their under- and misdiagnosis, which is associated with ineffective treatment and worsening of outcomes. Here, we aimed to develop a diagnostic algorithm, based on an online questionnaire and blood biomarker data, to reduce the misdiagnosis of bipolar disorder (BD) as major depressive disorder (MDD). Individuals with depressive symptoms (Patient Health Questionnaire-9 score >= 5) aged 18-45 years were recruited online. After completing a purpose-built online mental health questionnaire, eligible participants provided dried blood spot samples for biomarker analysis and underwent the World Health Organization World Mental Health Composite International Diagnostic Interview via telephone, to establish their mental health diagnosis. Extreme Gradient Boosting and nested cross-validation were used to train and validate diagnostic models differentiating BD from MDD in participants who self-reported a current MDD diagnosis. Mean test area under the receiver operating characteristic curve (AUROC) for separating participants with BD diagnosed as MDD (N = 126) from those with correct MDD diagnosis (N = 187) was 0.92 (95% CI: 0.86-0.97). Core predictors included elevated mood, grandiosity, talkativeness, recklessness and risky behaviour. Additional validation in participants with no previous mood disorder diagnosis showed AUROCs of 0.89 (0.86-0.91) and 0.90 (0.87-0.91) for separating newly diagnosed BD (N = 98) from MDD (N = 112) and subclinical low mood (N = 120), respectively. Validation in participants with a previous diagnosis of BD (N = 45) demonstrated sensitivity of 0.86 (0.57-0.96). The diagnostic algorithm accurately identified patients with BD in various clinical scenarios, and could help expedite accurate clinical diagnosis and treatment of BD

    GPT is an effective tool for multilingual psychological text analysis

    No full text
    The social and behavioral sciences have been increasingly using automated text analysis to measure psychological constructs in text. We explore whether GPT, the large-language model underlying the artificial intelligence chatbot ChatGPT, can be used as a tool for automated psychological text analysis in several languages. Across 15 datasets (n = 47,925 manually annotated tweets and news headlines), we tested whether different versions of GPT (3.5 Turbo, 4, and 4 Turbo) can accurately detect psychological constructs (sentiment, discrete emotions, offensiveness, and moral foundations) across 12 languages. We found that GPT (r = 0.59-0.77) performs much better than English-language dictionary analysis (r = 0.20-0.30) at detecting psychological constructs as judged by manual annotators. GPT performs nearly as well as, and sometimes better than, several top-performing fine-tuned machine learning models. Moreover, GPT’s performance has improved across successive versions of the model, particularly for lesser-spoken languages. Overall, GPT may be superior to many existing methods of automated text analysis, since it achieves relatively high accuracy across many languages, requires no training data, and is easy to use with simple prompts (e.g., “is this text negative?”) and little coding experience. We provide sample code and a video tutorial for analyzing text with the GPT application programming interface. We argue that GPT and other large-language models may democratize automated text analysis by making advanced natural language processing capabilities more accessible, and may help facilitate more cross-linguistic research with understudied languages

    Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS).

    Get PDF
    Existing high-throughput methods to identify RNA-binding proteins (RBPs) are based on capture of polyadenylated RNAs and cannot recover proteins that interact with nonadenylated RNAs, including long noncoding RNA, pre-mRNAs and bacterial RNAs. We present orthogonal organic phase separation (OOPS), which does not require molecular tagging or capture of polyadenylated RNA, and apply it to recover cross-linked protein-RNA and free protein, or protein-bound RNA and free RNA, in an unbiased way. We validated OOPS in HEK293, U2OS and MCF10A human cell lines, and show that 96% of proteins recovered were bound to RNA. We show that all long RNAs can be cross-linked to proteins, and recovered 1,838 RBPs, including 926 putative novel RBPs. OOPS is approximately 100-fold more efficient than existing methods and can enable analyses of dynamic RNA-protein interactions. We also characterize dynamic changes in RNA-protein interactions in mammalian cells following nocodazole arrest, and present a bacterial RNA-interactome for Escherichia coli. OOPS is compatible with downstream proteomics and RNA sequencing, and can be applied in any organism
    corecore