11 research outputs found

    Automatic Feature Generation for Setting Compilers Heuristics

    Get PDF
    Heuristics in compilers are often designed by manually analyzing sample programs. Recent advances have successfully applied machine learning to automatically generate heuristics. The typical format of these approaches reduces the input loops, functions or programs to a finite vector of features. A machine learning algorithm then learns a mapping from these features to the desired heuristic parameters. Choosing the right features is important and requires expert knowledge since no machine learning tool will work well with poorly chosen features. This paper introduces a novel mechanism to generate features. Grammars describing languages of features are defined and from these grammars sentences are randomly produced. The features are then evaluated over input data and computed values are given to machine learning tools. We propose the construction of domain specific feature languages for different purposes in different parts of the compiler. Using these feature languages, complex, machine generated features are extracted from program code. Using our observation that some functions can benefit from setting different compiler options, while others cannot, we demonstrate the use of a decision tree classifier to automatically identify the former using the automatically generated features. We show that our method outperform human generated features on problems of loop unrolling and phase ordering, achieving a statistically significant decrease in run-time compared to programs compiled using GCC’s heuristics.

    MILEPOST GCC: machine learning based research compiler

    Get PDF
    International audienceTuning hardwired compiler optimizations for rapidly evolving hardware makes porting an optimizing compiler for each new platform extremely challenging. Our radical approach is to develop a modular, extensible, self-optimizing compiler that automatically learns the best optimization heuristics based on the behavior of the platform. In this paper we describe MILEPOST GCC, a machine-learning-based compiler that automatically adjusts its optimization heuristics to improve the execution time, code size, or compilation time of specific programs on different architectures. Our preliminary experimental results show that it is possible to considerably reduce execution time of the MiBench benchmark suite on a range of platforms entirely automatically

    Milepost GCC: Machine Learning Enabled Self-tuning Compiler

    Get PDF
    International audienceTuning compiler optimizations for rapidly evolving hardwaremakes porting and extending an optimizing compiler for each new platform extremely challenging. Iterative optimization is a popular approach to adapting programs to a new architecture automatically using feedback-directed compilation. However, the large number of evaluations required for each program has prevented iterative compilation from widespread take-up in production compilers. Machine learning has been proposed to tune optimizations across programs systematically but is currently limited to a few transformations, long training phases and critically lacks publicly released, stable tools. Our approach is to develop a modular, extensible, self-tuning optimization infrastructure to automatically learn the best optimizations across multiple programs and architectures based on the correlation between program features, run-time behavior and optimizations. In this paper we describeMilepostGCC, the first publicly-available open-source machine learning-based compiler. It consists of an Interactive Compilation Interface (ICI) and plugins to extract program features and exchange optimization data with the cTuning.org open public repository. It automatically adapts the internal optimization heuristic at function-level granularity to improve execution time, code size and compilation time of a new program on a given architecture. Part of the MILEPOST technology together with low-level ICI-inspired plugin framework is now included in the mainline GCC.We developed machine learning plugins based on probabilistic and transductive approaches to predict good combinations of optimizations. Our preliminary experimental results show that it is possible to automatically reduce the execution time of individual MiBench programs, some by more than a factor of 2, while also improving compilation time and code size. On average we are able to reduce the execution time of the MiBench benchmark suite by 11% for the ARC reconfigurable processor.We also present a realistic multi-objective optimization scenario for Berkeley DB library using Milepost GCC and improve execution time by approximately 17%, while reducing compilatio

    Practical Aggregation of Semantical Program Properties for Machine Learning Based Optimization

    No full text
    International audienceIterative search combined with machine learning is a promising approach to design optimizing compilers harnessing the complexity of modern computing systems. While traversing a program optimization space, we collect characteristic feature vectors of the program, and use them to discover correlations across programs, target architectures, data sets, and performance. Predictive models can be derived from such correlations, effectively hiding the time-consuming feedback-directed optimization process from the application programmer. One key task of this approach, naturally assigned to compiler experts, is to design relevant features and implement scalable feature extractors, including statistical models that filter the most relevant information from millions of lines of code. This new task turns out to be a very challenging and tedious one from a compiler construction perspective. So far, only a limited set of ad-hoc, largely syntactical features have been devised. Yet machine learning is only able to discover correlations from information it is fed with: it is critical to select topical program features for a given optimization problem in order for this approach to succeed. We propose a general method for systematically generating numerical features from a program. This method puts no restrictions on how to logically and algebraically aggregate semantical properties into numerical features. We illustrate our method on the difficult problem of selecting the best possible combination of 88 available optimizations in GCC. We achieve 74% of the potential speedup obtained through iterative compilation on a wide range of benchmarks and four different general-purpose and embedded architectures. Our work is particularly relevant to embedded system designers willing to quickly adapt the optimization heuristics of a mainstream compiler to their custom ISA, microarchitecture, benchmark suite and workload. Our method has been integrated with the publicly released MILEPOST GCC

    Practical aggregation of semantical program properties for machine learning based optimization

    Get PDF
    Iterative search combined with machine learning is a promising approach to design optimizing compilers harnessing the complexity of modern computing systems. While traversing a program optimization space, we collect characteristic feature vectors of the program, and use them to discover correlations across programs, target architectures, data sets, and performance. Predictive models can be derived from such correlations, effectively hiding the time-consuming feedback-directed optimization process from the application programmer. One key task of this approach, naturally assigned to compiler experts, is to design relevant features and implement scalable feature extractors, including statistical models that filter the most relevant information from millions of lines of code. This new task turns out to be a very challenging and tedious one from a compiler constructio
    corecore