355 research outputs found

    Temporal Lobe Spikes Affect Distant Intrinsic Connectivity Networks

    Get PDF
    Objective: To evaluate local and distant blood oxygen level dependent (BOLD) signal changes related to interictal epileptiform discharges (IED) in drug-resistant temporal lobe epilepsy (TLE). Methods: Thirty-three TLE patients undergoing EEG–functional Magnetic Resonance Imaging (fMRI) as part of the presurgical workup were consecutively enrolled. First, a single-subject spike-related analysis was performed: (a) to verify the BOLD concordance with the presumed Epileptogenic Zone (EZ); and (b) to investigate the Intrinsic Connectivity Networks (ICN) involvement. Then, a group analysis was performed to search for common BOLD changes in TLE. Results: Interictal epileptiform discharges were recorded in 25 patients and in 19 (58%), a BOLD response was obtained at the single-subject level. In 42% of the cases, BOLD changes were observed in the temporal lobe, although only one patient had a pure concordant finding, with a single fMRI cluster overlapping (and limited to) the EZ identified by anatomo-electro-clinical correlations. In the remaining 58% of the cases, BOLD responses were localized outside the temporal lobe and the presumed EZ. In every patient, with a spike-related fMRI map, at least one ICN appeared to be involved. Four main ICNs were preferentially involved, namely, motor, visual, auditory/motor speech, and the default mode network. At the single-subject level, EEG–fMRI proved to have high specificity (above 65%) in detecting engagement of an ICN and the corresponding ictal/postictal symptom, and good positive predictive value (above 67%) in all networks except the visual one. Finally, in the group analysis of BOLD changes related to IED revealed common activations at the right precentral gyrus, supplementary motor area, and middle cingulate gyrus. Significance: Interictal temporal spikes affect several distant extra-temporal areas, and specifically the motor/premotor cortex. EEG–fMRI in patients with TLE eligible for surgery is recommended not for strictly localizing purposes rather it might be useful to investigate ICNs alterations at the single-subject level

    Aetiology of pneumonia following isolated closed head injury

    Get PDF
    AbstractPatients undergoing mechanical ventilation (MV) after an isolated closed head injury (ICHI) have often been found to develop hospital-acquired pneumonia (HAP) well before subjects who require MV for different reasons. In a prospective study of patients receiving MV after an ICHI, 38 subjects (out of 65 with clinically suspected HAP) had a bacteriological diagnosis established on the basis of correspondence between cultures made from bronchoalveolar lavage and protected specimen brush (with quantitative thresholds of 104 and 103 cfu ml−1, respectively). Patients were separated according to the time of onset of HAP, with 20 subjects who developed HAP within 4 days of the start of MV (early onset pneumonia, EOP) and 18 subjects who developed HAP after the fourth day (late onset pneumonia, LOP). In those who had LOP, an expected spectrum of organisms was found, with Gram-negatives (especially Pseudomonas sp.) accounting for the majority of isolates. However, in EOP cases, Gram-positive bacteria (especially Staphylococcus sp. and Streptococcus pneumoniae) were found to largely predominate (P = 0·0000026). This confirms the high incidence of staphylococcal pneumonia in neurosurgery patients, and also provides evidence that the vast majority of such staphylococcal pneumonia are EOP. Unlike most previous reports, the microbiological findings from the present study suggest that a cut-off point of 4 days successfully distinguishes between EOP and LOP. Since these two clinical entities differ significantly in terms of pathogenesis and aetiology, preventive measures and therapeutical protocols have to be tailored accordingly

    An ultra-long new onset refractory status epilepticus: Winning the battle but losing the war?

    Get PDF
    New onset refractory status epilepticus (NORSE), is a rare and challenging condition occurring in previously healthy people. The etiology often remains undiscovered and is frequently associated with an unfavorable outcome. We report the electroclinical and neuroradiological evolution of an ultra-long case of NORSE of unknown etiology. A 38-year-old woman with a prodrome of fever, vomiting and diarrhea was admitted to our Intensive Care Unit for refractory convulsive status epilepticus (SE). Her past medical history was unremarkable. Extensive examinations were negative for potential viral, autoimmune and metabolic etiologies. Despite multiple therapeutical attempts with antiseizures medications, anesthetics and immunotherapy, seizures persisted. After nearly 6 months of enduring seizures, SE finally ceased and the patient gradually recovered to a minimum state of awareness. She was then able to communicate through one-word utterances and to understand simple tasks. At a three-years follow-up, she developed multifocal drug-resistant epilepsy, subcortical myoclonus and severe spastic quadraparesis, becoming completely dependent for activities of daily living. To our knowledge, this represents one of the longest cases of NORSE with final status resolution at this time. However, ultra-long SE in this case led to severe and disabling neurological sequelae. Future studies focused on disease modifying treatments for refractory SE are needed

    Hydrogen sulfide inhibits tmprss2 in human airway epithelial cells: Implications for sars‐cov‐2 infection

    Get PDF
    The COVID‐19 pandemic has now affected around 190 million people worldwide, accounting for more than 4 million confirmed deaths. Besides ongoing global vaccination, finding protective and therapeutic strategies is an urgent clinical need. SARS‐CoV‐2 mostly infects the host organism via the respiratory system, requiring angiotensin‐converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) to enter target cells. Therefore, these surface proteins are considered potential druggable targets. Hydrogen sulfide (H2S) is a gasotransmitter produced by several cell types and is also part of natural compounds, such as sulfurous waters that are often inhaled as low‐intensity therapy and prevention in different respiratory conditions. H2S is a potent biological mediator, with anti‐oxidant, anti‐inflammatory, and, as more recently shown, also antiviral activities. Considering that respiratory epithelial cells can be directly exposed to H2S by inhalation, here we tested the in vitro effects of H2S‐donors on TMPRSS2 and ACE2 expression in human upper and lower airway epithelial cells. We showed that H2S significantly reduces the expression of TMPRSS2 without modifying ACE2 expression both in respiratory cell lines and primary human upper and lower airway epithelial cells. Results suggest that inhalational exposure of respiratory epithelial cells to natural H2S sources may hinder SARS‐CoV‐2 entry into airway epithelial cells and, consequently, potentially prevent the virus from spreading into the lower respiratory tract and the lung

    Monitoring inflammation and airway remodeling by fluorescence molecular tomography in a chronic asthma model

    Get PDF
    Background: Asthma is a multifactorial disease for which a variety of mouse models have been developed. A major drawback of these models is represented by the transient nature of the airway pathology peaking 24-72h after challenge and resolving in 1-2weeks. We characterized the temporal evolution of pulmonary inflammation and tissue remodeling in a recently described mouse model of chronic asthma (8week treatment with 3 allergens: Dust mite, Ragweed, and Aspergillus; DRA). Methods: We studied the DRA model taking advantage of fluorescence molecular tomography (FMT) imaging using near-infrared probes to non-invasively evaluate lung inflammation and airway remodeling. At 4, 6, 8 or 11weeks, cathepsin- and metalloproteinase-dependent fluorescence was evaluated in vivo. A subgroup of animals, after 4weeks of DRA, was treated with Budesonide (100\u3bcg/kg intranasally) daily for 4weeks. Results: Cathepsin-dependent fluorescence in DRA-sensitized mice resulted significantly increased at 6 and 8weeks, and was markedly inhibited by budesonide. This fluorescent signal well correlated with ex vivo analysis such as bronchoalveolar lavage eosinophils and pulmonary inflammatory cell infiltration. Metalloproteinase-dependent fluorescence was significantly increased at 8 and 11weeks, nicely correlated with collagen deposition, as evaluated histologically by Masson's Trichrome staining, and airway epithelium hypertrophy, and was only partly inhibited by budesonide. Conclusions: FMT proved suitable for longitudinal studies to evaluate asthma progression, showing that cathepsin activity could be used to monitor inflammatory cell infiltration while metalloproteinase activity parallels airway remodeling, allowing the determination of steroid treatment efficacy in a chronic asthma model in mice

    fMRI-Based Effective Connectivity in Surgical Remediable Epilepsies: A Pilot Study

    Get PDF
    Simultaneous EEG-fMRI can contribute to identify the epileptogenic zone (EZ) in focal epilepsies. However, fMRI maps related to Interictal Epileptiform Discharges (IED) commonly show multiple regions of signal change rather than focal ones. Dynamic causal modeling (DCM) can estimate effective connectivity, i.e. the causal effects exerted by one brain region over another, based on fMRI data. Here, we employed DCM on fMRI data in 10 focal epilepsy patients with multiple IED-related regions of BOLD signal change, to test whether this approach can help the localization process of EZ. For each subject, a family of competing deterministic, plausible DCM models were constructed using IED as autonomous input at each node, one at time. The DCM findings were compared to the presurgical evaluation results and classified as: "Concordant" if the node identified by DCM matches the presumed focus, "Discordant" if the node is distant from the presumed focus, or "Inconclusive" (no statistically significant result). Furthermore, patients who subsequently underwent intracranial EEG recordings or surgery were considered as having an independent validation of DCM results. The effective connectivity focus identified using DCM was Concordant in 7 patients, Discordant in two cases and Inconclusive in one. In four of the 6 patients operated, the DCM findings were validated. Notably, the two Discordant and Invalidated results were found in patients with poor surgical outcome. Our findings provide preliminary evidence to support the applicability of DCM on fMRI data to investigate the epileptic networks in focal epilepsy and, particularly, to identify the EZ in complex cases
    • 

    corecore