9 research outputs found

    Interdependent factors influencing the carbon yield, structure, and CO2 adsorption capacity of lignocellulose-derived carbon fibers using multiple linear regression

    No full text
    | openaire: EC/H2020/715788/EU//WoCaFi Funding Information: Open Access funding provided by Aalto University. The research was supported by European Union’s Horizon 2020 research and innovation programme [715788] and the Academy of Finland (Elucidation of the structural development during cellulose carbonization for advanced carbon materials) [348354]. Publisher Copyright: © 2023, The Author(s).Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibers manufactured via a coagulation process. Using Design of Experiments, this article assesses the individual and combined effects of diammonium hydrogen phosphate (DAP), lignin, and CO2 activation on the carbonization yield and properties of cellulose-based carbon fibers. Synergistic effects are identified using the response surface methodology. This paper evidences that DAP and lignin could affect cellulose pyrolysis positively in terms of carbonization yield. Nevertheless, DAP and lignin do not have an additive effect on increasing the yield. In fact, combined DAP and lignin can affect negatively the carbonization yield within a certain composition range. Further, the thermogravimetric CO2 adsorption of the respective CFs was measured, showing relatively high values (ca. 2 mmol/g) at unsaturated pressure conditions. The CFs were microporous materials with potential applications in gas separation membranes and CO2 storage systems. Peer reviewe

    Thermal gelation of cellulose based suspensions

    No full text
    Funding Information: Open Access funding provided by Aalto University. J. K. acknowledges funding from Academy of Finland (308235). M. J. A., A. P. and J. K. acknowledge support from FinnCERES flagship (151830423), Business Finland (211835) and Future Makers (Älyä Vaahtoihin) programs. Publisher Copyright: © 2023, The Author(s).A more sustainable future calls for bio-based alternatives to replace plastic foams for various applications, such as packaging, insulation and cushioning. Some bio-based foams emerging in scientific publications are fabricated using liquid foam templating and methyl cellulose as well as fibers as main constituents. Scaling up of the production, however, requires a comprehensive understanding of the rheology of the foam during the shaping and drying processes. In this article, we report rheological studies of cellulose based systems in the context of thermal gelation. In more precise terms, we study how the presence of cellulose fibers and other additive materials influences the thermal gelation properties of methyl cellulose. We observe that the rheological properties, while heavily dependent on the material composition, are reasonably adjustable by appropriate material choices. The fibers are seen to decrease the temperature required for methyl cellulose to undergo a viscoelastic transition which is useful in the solid foam fabrication process. We anticipate that in the present application, the fibers increase the stability of the desired structure during the drying stage of the foam.Peer reviewe

    Cellulose foams as scalable templates for phase change materials

    No full text
    Funding Information: M. Alava and J. Koivisto acknowledge support from FinnCERES flagship [ 151830423 ] and Business Finland [ 211835 ]. M. Alava, T. Mäkinen and I. Y. Miranda-Valdez acknowledge support from Business Finland [ 211909 ]. M. R. Yazdani acknowledges financial support from the Academy of Finland [ 343192 ]. I. Y. Miranda-Valdez acknowledges financial support from the Finnish Ministry of Education and Culture via its Finland Fellowship scholarship program. The funding sources had no role in any activity related to this manuscript. Publisher Copyright: © 2023 The Author(s)Cellulose foams produced by wet-templating fibers and surfactants offer an unlimited creative space for the design of green functional materials with a wide range of energy-related applications. Aiming to reduce plastic pollution, cellulose foams promise to replace plastic foams after tailoring physical functionalities into their structures. Here, this work demonstrates that cellulose foams made of methylcellulose and cellulose fibers can exhibit a solid–liquid phase change functionality by adding a phase change material (PCM) during the foam-forming process. The resulting foam composites, termed cellulose phase change foams (PCFs), exhibit a tenth of cellulose's density (134.7 kg m−3) yet a high Young's modulus (0.42MPa). They are also dimensionally stable over a wide range of temperatures while absorbing up to 108 kJ kg−1 as latent heat when the PCM confined to the foam experiences a solid-to-liquid transition at ∼60 °C, and releasing 108 kJ kg−1 as latent heat when changing from liquid to solid at ∼40 °C. Such phase change transition opens up broad applications for the PCFs as thermal insulators. For example, by further tuning the transition temperature, the PCFs can exploit their phase change and reduce the heat flow rate through their radial direction at specified temperatures. This article showcases the versatility of the foam-forming process of cellulose to accommodate physical functionalities in materials with complex architectures. Furthermore, thanks to the advances in cellulose foam-forming, such foams are recyclable, industrially scalable, and can be exploited as heat storage materials.Peer reviewe

    Fractional rheology of colloidal hydrogels with cellulose nanofibers

    No full text
    Abstract: Colloidal gels are soft solids composed of particles dispersed in a fluid phase. Their rheological behavior highly depends on the particle concentration, but establishing a relationship can be challenging. This article showcases the potential of fractional rheology to model and predict linear viscoelastic responses of colloidal hydrogels containing TEMPO-oxidized cellulose nanofibers. Cellulose nanofiber hydrogels are soft solids whose rheology is directly related to the particle concentration. Therefore, this work defined the rheological behavior of the hydrogels using a fractional order derivative analytically solved to determine rheological responses in frequency, stress relaxation, and creep. Using two parameters, it evaluated the rheology of cellulose nanofiber hydrogels and established tests that predict rheological behaviors for given particle concentrations. The findings suggested that the fractional approach could become a standard method for characterizing cellulose nanofiber hydrogels in the reported concentration regime. The two parameters of the fractional model build a comparison framework to assess the rheology of different viscoelastic materials. Graphic abstract: [Figure not available: see fulltext.]</p

    Viscoelastic phenomena in methylcellulose aqueous systems:Application of fractional calculus

    No full text
    Fractional calculus models can potentially describe the viscoelastic phenomena in soft solids. Nevertheless, their successful application is limited. This paper explored the potential of using fractional calculus models to describe the viscoelastic properties of soft solids, focusing on methylcellulose aqueous systems. Methylcellulose is an important food additive, and it is known for its complex rheological behaviors, including thermogelation, which still puzzle rheologists. Through dynamic mechanical analysis and fractional rheology, we demonstrated that fractional calculus described the frequency- and temperature-dependent rheology of methylcellulose. This paper also showcased how including one springpot could potentially replace numerous spring-dashpot arrangements. Our findings using fractional calculus suggested that the thermogelation of methylcellulose involves the cooperative mobility of polymer chains and can be described as a process analogous to the glass transition in polymers. This study highlighted the power of combining fractional calculus and rheology to understand complex viscoelastic phenomena in soft solids.</p

    Viscoelastic phenomena in methylcellulose aqueous systems:Application of fractional calculus

    No full text
    Fractional calculus models can potentially describe the viscoelastic phenomena in soft solids. Nevertheless, their successful application is limited. This paper explored the potential of using fractional calculus models to describe the viscoelastic properties of soft solids, focusing on methylcellulose aqueous systems. Methylcellulose is an important food additive, and it is known for its complex rheological behaviors, including thermogelation, which still puzzle rheologists. Through dynamic mechanical analysis and fractional rheology, we demonstrated that fractional calculus described the frequency- and temperature-dependent rheology of methylcellulose. This paper also showcased how including one springpot could potentially replace numerous spring-dashpot arrangements. Our findings using fractional calculus suggested that the thermogelation of methylcellulose involves the cooperative mobility of polymer chains and can be described as a process analogous to the glass transition in polymers. This study highlighted the power of combining fractional calculus and rheology to understand complex viscoelastic phenomena in soft solids.</p

    Foam-formed biocomposites based on cellulose products and lignin

    No full text
    Funding Information: M.A., L.J., J.K., T.M. and A.P. acknowledge support from FinnCERES flagship (151830423) and Business Finland (211835). L.V. acknowledges funding from the Vilho, Yrjö, and Kalle Väisälä Foundation via personal grants. Publisher Copyright: © 2023, The Author(s).Abstract: Foam-formed cellulose biocomposites are a promising technology for developing lightweight and sustainable packaging materials. In this work, we produce and characterize biocomposite foams based on methylcellulose (MC), cellulose fibers (CF), and lignin (LN). The results indicate that adding organosolv lignin to a foam prepared using MC and CF moderately increases Young’s modulus, protects the foam from the growth of Escherichia coli bacteria, and improves the hydrophobicity of the foam surface. This article concludes that organosolv lignin enhances many properties of cellulose biocomposite foams that are required in applications such as insulation, packaging, and cushioning. The optimization of the foam composition offers research directions toward the upscaling of the material solution to the industrial scale. Graphical abstract: [Figure not available: see fulltext.].Peer reviewe

    Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients

    No full text
    BACKGROUN

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore