15,402 research outputs found

    THE NEW CARISSA SHIPWRECK: AESTHETIC IMPACT ON COASTAL RECREATION

    Get PDF
    This paper uses a combination of techniques, including a stated-preference survey, random utility model, visitor count study, and benefits transfer, to estimate the aesthetic impact of the New Carissa shipwreck on coastal recreation. To our knowledge, this is the first study ever conducted on the recreation impacts of a shipwreck.Resource /Energy Economics and Policy,

    Invisible decays of ultra-high energy neutrinos

    Get PDF
    Gamma-ray bursts (GRBs) are expected to provide a source of ultra high energy cosmic rays, accompanied with potentially detectable neutrinos at neutrino telescopes. Recently, IceCube has set an upper bound on this neutrino flux well below theoretical expectation. We investigate whether this mismatch between expectation and observation can be due to neutrino decay. We demosntrate the phenomenological consistency and theoretical plausibility of the neutrino decay hypothesis. A potential implication is the observability of majoron-emitting neutrinoless double beta decay.Comment: 11 pages, 3 figures. To appear in Frontiers High Energy Physic

    Massive Black Hole Binary Systems in Hierarchical Scenario of Structure Formation

    Full text link
    The hierarchical scenario of structure formation describes how objects like galaxies and galaxy clusters are formed by mergers of small objects. In this scenario, mergers of galaxies can lead to the formation of massive black hole (MBH) binary systems. On the other hand, the merger of two MBH could produce a gravitational wave signal detectable, in principle, by the Laser Interferometer Space Antenna (LISA). In the present work, we use the Press-Schechter formalism, and its extension, to describe the merger rate of haloes which contain massive black holes. Here, we do not study the gravitational wave emission of these systems. However, we present an initial study to determine the number of systems formed via mergers that could permit, in a future extension of this work, the calculation of the signature in gravitational waves of these systems.Comment: to match the published version in International Journal of Modern Physics

    A generalized vortex lattice method for subsonic and supersonic flow applications

    Get PDF
    If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program

    Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering

    Full text link
    We explore the potential of current and next generation of coherent elastic neutrino-nucleus scattering (CEν\nuNS) experiments in probing neutrino electromagnetic interactions. On the basis of a thorough statistical analysis, we determine the sensitivities on each component of the Majorana neutrino transition magnetic moment (TMM), Λi\left \vert \Lambda_i \right \vert, that follow from low-energy neutrino-nucleus experiments. We derive the sensitivity to neutrino TMM from the first CEν\nuNS measurement by the COHERENT experiment, at the Spallation Neutron Source. We also present results for the next phases of COHERENT using HPGe, LAr and NaI[Tl] detectors and for reactor neutrino experiments such as CONUS, CONNIE, MINER, TEXONO and RED100. The role of the CP violating phases in each case is also briefly discussed. We conclude that future CEν\nuNS experiments with low-threshold capabilities can improve current TMM limits obtained from Borexino data.Comment: 25 pages, 8 figures, 2 tables, analysis updated; conclusions unchanged; references added; matches published versio
    corecore