11 research outputs found

    Formation of ultrathin Ni germanides : solid-phase reaction, morphology and texture

    Get PDF
    The solid-phase reaction of ultrathin (<= 10 nm) Ni films with different Ge substrates (single-crystalline (100), polycrystalline, and amorphous) was studied. As thickness goes down, thin film texture becomes a dominant factor in both the film's phase formation and morphological evolution. As a consequence, certain metastable microstructures are epitaxially stabilized on crystalline substrates, such as the epsilon-Ni5Ge3 phase or a strained NiGe crystal structure on the single-crystalline substrates. Similarly, the destabilizing effect of axiotaxial texture on the film's morphology becomes more pronounced as film thicknesses become smaller. These effects are contrasted by the evolution of germanide films on amorphous substrates, on which neither epitaxy nor axiotaxy can form, i.e. none of the (de) stabilizing effects of texture are observed. The crystallization of such amorphous substrates however, drives the film breakup

    Impurity-enhanced solid-state amorphization: the Ni-Si thin film reaction altered by nitrogen

    No full text
    © 2019 IOP Publishing Ltd. Solid-state amorphization, the growth of an amorphous phase during annealing, has been studied in a wide variety of thin film structures. Whereas research on the remarkable growth of such a metastable phase has mostly focused on strictly binary systems, far less is known about the influence of impurities on such reactions. In this paper, the influence of nitrogen, introduced via ion implantation, is studied on the solid-state amorphization reaction of thin (35 nm) Ni films with Si, using in situ x-ray diffraction (XRD), ex situ Rutherford backscattering spectrometry, XTEM, and synchrotron XRD. It is shown that due to small amounts of nitrogen (<2 at.%), an amorphous Ni-Si phase grows almost an order of magnitude thicker during annealing than for unimplanted samples. Nitrogen hinders the nucleation of the first crystalline phases, leading to a new reaction path: the formation of the metal-rich crystalline silicides is suppressed in favour of an amorphous Ni-Si alloy; during a brief temperature window between 330 and 350 ° C, the entire film is converted to an amorphous phase. The first crystalline structure to grow is the orthorhombic NiSi phase. We demonstrate that this impurity-enchanced solid-state amorphization reaction occurs only under specific implantation conditions. In particular, the initial distribution of nitrogen upon implantation is crucial: sufficient nitrogen impurities must be present at the interface throughout the reaction. Introducing implantation damage without nitrogen impurities (e.g. by implanting a noble gas) does not cause the enhanced solid-state amorphization reaction. Moreover, we show that the stabilizing effect of nitrogen on amorphous Ni-Si films (with a composition ranging from 40% to 50% Si) is not restricted to thin film reactions, but is a general feature of the Ni-Si system.status: publishe

    A systematic review of the physical and chemical characteristics of pollutants from biomass burning and combustion of fossil fuels and health effects in Brazil

    No full text
    The aim of this study was to carry out a review of scientific literature published in Brazil between 2000 and 2009 on the characteristics of air pollutants from different emission sources, especially particulate matter (PM) and its effects on respiratory health. Using electronic databases, a systematic literature review was performed of all research related to air pollutant emissions. Publications were analyzed to identify the physical and chemical characteristics of pollutants from different emission sources and their related effects on the respiratory system. The PM2.5 is composed predominantly of organic compounds with 20% of inorganic elements. Higher concentrations of metals were detected in metropolitan areas than in biomass burning regions. The relative risk of hospital admissions due to respiratory diseases in children was higher than in the elderly population. The results of studies of health effects of air pollution are specific to the region where the emissions occurred and should not be used to depict the situation in other areas with different emission sources

    Ecophysiology of the cacao tree

    No full text
    corecore