6 research outputs found

    The Intrinsic Antiviral Defense to Incoming HSV-1 Genomes Includes Specific DNA Repair Proteins and Is Counteracted by the Viral Protein ICP0

    Get PDF
    Cellular restriction factors responding to herpesvirus infection include the ND10 components PML, Sp100 and hDaxx. During the initial stages of HSV-1 infection, novel sub-nuclear structures containing these ND10 proteins form in association with incoming viral genomes. We report that several cellular DNA damage response proteins also relocate to sites associated with incoming viral genomes where they contribute to the cellular front line defense. We show that recruitment of DNA repair proteins to these sites is independent of ND10 components, and instead is coordinated by the cellular ubiquitin ligases RNF8 and RNF168. The viral protein ICP0 targets RNF8 and RNF168 for degradation, thereby preventing the deposition of repressive ubiquitin marks and counteracting this repair protein recruitment. This study highlights important parallels between recognition of cellular DNA damage and recognition of viral genomes, and adds RNF8 and RNF168 to the list of factors contributing to the intrinsic antiviral defense against herpesvirus infection

    A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses

    No full text
    The ICP0 protein of herpes simplex virus type 1 is an E3 ubiquitin ligase and transactivator required for the efficient switch between latent and lytic infection. As DNA damaging treatments are known to reactivate latent virus, we wished to explore whether ICP0 modulates the cellular response to DNA damage. We report that ICP0 prevents accumulation of repair factors at cellular damage sites, acting between recruitment of the mediator proteins Mdc1 and 53BP1. We identify RNF8 and RNF168, cellular histone ubiquitin ligases responsible for anchoring repair factors at sites of damage, as new targets for ICP0-mediated degradation. By targeting these ligases, ICP0 expression results in loss of ubiquitinated forms of H2A, mobilization of DNA repair proteins and enhanced viral fitness. Our study raises the possibility that the ICP0-mediated control of histone ubiquitination may link DNA repair, relief of transcriptional repression, and activation of latent viral genomes

    Viral E3 Ubiquitin Ligase-Mediated Degradation of a Cellular E3: Viral Mimicry of a Cellular Phosphorylation Mark Targets the RNF8 FHA Domain

    No full text
    Viral hijacking of cellular processes relies on the ability to mimic the structure or function of cellular proteins. Many viruses encode ubiquitin ligases to facilitate infection, although the mechanisms by which they select their substrates are often unknown. The Herpes Simplex Virus type-1-encoded E3 ubiquitin ligase, ICP0, promotes infection through degradation of cellular proteins, including the DNA damage response E3 ligases RNF8 and RNF168. Here we describe a mechanism by which this viral E3 hijacks a cellular phosphorylation-based targeting strategy to degrade RNF8. By mimicking a cellular phosphosite, ICP0 binds RNF8 via the RNF8 forkhead associated (FHA) domain. Phosphorylation of ICP0 T67 by CK1 recruits RNF8 for degradation and thereby promotes viral transcription, replication, and progeny production. We demonstrate that this mechanism may constitute a broader viral strategy to target other cellular factors, highlighting the importance of this region of the ICP0 protein in countering intrinsic antiviral defenses
    corecore