3 research outputs found

    How to improve the accuracy of height data from bird tracking devices?:An assessment of high-frequency GPS tracking and barometric altimetry in field conditions

    Get PDF
    Background: In the context of rapid development of wind energy infrastructure, information on the flight height of birds is vital to assess their collision risk with wind turbines. GPS tags potentially represent a powerful tool to collect flight height data, yet GPS positions are associated with substantial vertical error. Here, we assessed to what extent high-frequency GPS tracking with fix intervals of 2–3 s (GPS remaining turned on between fixes), or barometric altimetry using air pressure loggers integrated in GPS tags, improved the accuracy of height data compared to standard low-frequency GPS tracking (fix interval ≥ 5 min; GPS turned off between fixes). Results: Using data from 10 GPS tag models from three manufacturers in a field setting (194 tags deployed on free-living raptors), we estimated vertical accuracy based on periods when the birds were stationary on the ground (true height above ground was approximately zero), and the difference between GPS and barometric height in flight. In GPS height data, vertical accuracy was mainly driven by noise (little bias), while in barometric data, it was mostly affected by bias (little noise). In high-frequency GPS data, vertical accuracy was improved compared to low-frequency data in each tag model (mean absolute error (AE) reduced by 72% on average; range of mean AE 2–7 vs. 7–30 m). In barometric data, vertical accuracy did not differ between high- and low-frequency modes, with a bias of − 15 to − 5 m and mean AE of 7–15 m in stationary positions. However, the median difference between GPS and barometric data was smaller in flight positions than in stationary positions, suggesting that the bias in barometric height data was smaller in flight. Finally, simulations showed that the remaining vertical error in barometric and high-frequency GPS data had little effect on flight height distributions and the proportion of positions within the collision risk height range, as opposed to the extensive noise found in low-frequency GPS data in some tag models. Conclusions: Barometric altimetry may provide more accurate height data than standard low-frequency GPS tracking, but it involves the risk of a systematic error. Currently, high-frequency GPS tracking provides highest vertical accuracy and may thus substantially advance the study of wind turbine collision risk in birds.</p

    Enhancing monitoring and transboundary collaboration for conserving migratory species under global change: The priority case of the red kite

    Get PDF
    Calls for urgent action to conserve biodiversity under global change are increasing, and conservation of migratory species in this context poses special challenges. In the last two decades the Convention on the Conservation of Migratory Species of Wild Animals (CMS) has provided a framework for several subsidiary instruments including action plans for migratory bird species, but the effectiveness and transferability of these plans remain unclear. Such laws and policies have been credited with positive outcomes for the conservation of migratory species, but the lack of international coordination and on-ground implementation pose major challenges. While research on migratory populations has received growing attention, considerably less emphasis has been given to integrating ecological information throughout the annual cycle for examining strategies to conserve migratory species at multiple scales in the face of global change. We fill this gap through a case study examining the ecological status and conservation of a migratory raptor and facultative scavenger, the red kite (Milvus milvus), whose current breeding range is limited to Europe and is associated with agricultural landscapes and restricted to the temperate zone. Based on our review, conservation actions have been successful at recovering red kite populations within certain regions. Populations however remain depleted along the southern-most edge of the geographic range where many migratory red kites from northern strongholds overwinter. This led us to a forward-looking and integrated strategy that emphasizes international coordination involving researchers and conservation practitioners to enhance the science-policy-action interface. We identify and explore key issues for conserving the red kite under global change, including enhancing conservation actions within and outside protected areas, recovering depleted populations, accounting for climate change, and transboundary coordination in adaptive conservation and management actions. The integrated conservation strategy is sufficiently general such that it can be adapted to inform conservation of other highly mobile species subject to global change.Financial and logistic support were provided by GREFA, IREC, UCLM (Universidad de Castilla-La Mancha), CSIC and MITECO.Peer reviewe
    corecore