15 research outputs found

    Oyster reef restoration fails to recoup global historic ecosystem losses despite substantial biodiversity gain

    Get PDF
    This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordHuman activities have led to degradation of ecosystems globally. The lost ecosystem functions and services accumulate from the time of disturbance to the full recovery of the ecosystem and can be quantified as a "recovery debt," providing a valuable tool to develop better restoration practices that accelerate recovery and limit losses. Here, we quantified the recovery of faunal biodiversity and abundance toward a predisturbed state following structural restoration of oyster habitats globally. We found that while restoration initiates a rapid increase in biodiversity and abundance of reef-associated species within 2 years, recovery rate then decreases substantially, leaving a global shortfall in recovery of 35% below a predisturbed state. While efficient restoration methods boost recovery and minimize recovery shortfalls, the time to full recovery is yet to be quantified. Therefore, potential future coastal development should weigh up not only the instantaneous damage to ecosystem functions but also the potential for generational loss of services.Hong Kong Post-Doctoral FellowshipEnvironment and Conservation Fund Hong KongFaculty of Science (HKU) Rising Star Fun

    Fermi Large Area Telescope Performance after 10 Years of Operation

    Get PDF
    The Large Area Telescope (LAT), the primary instrument for the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from 30 MeV to more than 300 GeV. We describe the performance of the instrument at the 10 yr milestone. LAT performance remains well within the specifications defined during the planning phase, validating the design choices and supporting the compelling case to extend the duration of the Fermi mission. The details provided here will be useful when designing the next generation of high-energy gamma-ray observatories

    Acute mammary and liver transcriptome responses after an intramammary Escherichia coli lipopolysaccharide challenge in postpartal dairy cows

    No full text
    The study investigated the effect of an intramammary lipopolysaccharide (LPS) challenge on the bovine mammary and liver transcriptome and its consequences on metabolic biomarkers and liver tissue composition. At 7days of lactation, 7 cows served as controls (CTR) and 7 cows (LPS) received an intramammary Escherichia coli LPS challenge. The mammary and liver tissues for transcriptomic profiling were biopsied at 2.5h from challenge. Liver composition was evaluated at 2.5h and 7days after challenge, and blood biomarkers were analyzed at 2, 3, 7 and 14days from challenge. In mammary tissue, the LPS challenge resulted in 189 differentially expressed genes (DEG), with 20 down-regulated and 169 up-regulated. In liver tissue, there were 107 DEG in LPS compared with CTR with 42 down-regulated and 65 up-regulated. In mammary, bioinformatics analysis highlighted that LPS led to activation of NOD-like receptor signaling, Toll-like receptor signaling, RIG-I-like receptor signaling and apoptosis pathways. In liver, LPS resulted in an overall inhibition of fatty acid elongation in mitochondria and activation of the p53 signaling pathway. The LPS challenge induced changes in liver lipid composition, a systemic inflammation (rise of blood ceruloplasmin and bilirubin), and an increase in body fat mobilization. The data suggest that cells within the inflamed mammary gland respond by activating mechanisms of pathogen recognition. However, in the liver the response likely depends on mediators originating from the udder that affect liver functionality and specifically fatty acid metabolism (beta-oxidation, ketogenesis, and lipoprotein synthesis)

    Gut response induced by weaning in piglet features marked changes in immune and inflammatory response

    No full text
    At weaning, piglets are exposed to many stressors, such as separation from the sow, mixing with other litters, end of lactational immunity, and a change in their environment and gut microbiota. The sudden change of feeding regime after weaning causes morphological and histological changes in the small intestine which are critical for the immature digestive system. Sixteen female piglets were studied to assess the effect of sorbic acid supplementation on the small intestine tissue transcriptome. At weaning day (T0, piglet age 28 days), four piglets were sacrificed and ileal tissue samples collected. The remaining 12 piglets were weighed and randomly assigned to different postweaning (T5, piglet age 33 days) diets. Diet A (n = 6) contained 5 g/kg of sorbic acid. In diet B (n = 6), the organic acids were replaced by barley flour. Total RNA was isolated and then hybridized to CombiMatrix CustomArray™ 90-K platform microarrays, screening about 30 K genes. Even though diet had no detectable effect on the transcriptome during the first 5 days after weaning, results highlighted some of the response mechanisms to the stress of weaning occurring in the piglet gut. A total of 205 differentially expressed genes were used for functional analysis using the bioinformatics tools BLAST2GO, Ingenuity Pathway Analysis 8.0, and Dynamic Impact Approach (DIA). Bioinformatic analysis revealed that apoptosis, RIG-I-like, and NOD-like receptor signaling were altered as a result of weaning. Interferons and caspases gene families were the most activated after weaning in response to piglets to multiple stressors. Results suggest that immune and inflammatory responses were activated and likely are a cause of small intestine atrophy as revealed by a decrease in villus height and villus/crypt ratio
    corecore