613 research outputs found
Constraints on the Merger Models of Elliptical Galaxies from their Globular Cluster Systems
The discovery of proto-globular cluster candidates in many current-day
mergers allows us to better understand the possible effects of a merger event
on the globular cluster system of a galaxy, and to foresee the properties of
the end-product. By comparing these expectations to the properties of globular
cluster systems of today's elliptical galaxies we can constrain merger models.
The observational data indicate that i) every gaseous merger induces the
formation of new star clusters, ii) the number of new clusters formed in such a
merger increases with the gas content of the progenitor galaxies.
Low-luminosity (about M_V>-21), disky ellipticals are generally thought to be
the result of a gaseous merger. As such, new globular clusters are expected to
form but have not been detected to date. We investigate various reasons for the
non-detection of sub-populations in low-luminosity ellipticals, i.e. absence of
an old population, absence of a new population, destruction of one of the
populations, and finally, an age-metallicity conspiracy that allows old and new
globular clusters to appear indistinguishable at the present epoch. All of
these possibilities lead us to a similar conclusion, namely that low-luminosity
ellipticals did not form recently (z<1) in a gas-rich merger, and might not
have formed in a major merger of stellar systems at all. High-luminosity
ellipticals do reveal globular cluster sub-populations. However, it is
difficult to account for the two populations in terms of mergers alone, and in
particular, we can rule out scenarios in which the second sub-population is the
product of a recent, gas-poor merger.Comment: 11 pages (MNRAS style, two columns, including 2 figures, mn.sty
included), accepted for publication in the MNRAS, also available at
http://www.ucolick.org/~mkissle
Extragalactic Globular Clusters in the Near Infrared I: A comparison between M87 and NGC 4478
We compare optical and near infrared colours of globular clusters in M87, the
central giant elliptical in Virgo, and NGC 4478, an intermediate luminosity
galaxy in Virgo, close in projection to M87. Combining V and I photometry
obtained with the WFPC2 on HST and Ks photometry obtained with the NIRC on Keck
1, we find the broad range in colour and previously detected bi-modality in
M87. We confirm that NGC 4478 only hosts a blue sub-population of globular
clusters and now show that these clusters' V-I and V-K colours are very similar
to those of the halo globular clusters in Milky Way and M31. Most likely, a
metal-rich sub-population never formed around this galaxy (rather than having
formed and been destroyed later), probably because its metal-rich gas was
stripped during its passage through the centre of the Virgo cluster.
The V-I, V-K colours are close to the predicted colours from SSP models for
old populations. However, M87 hosts a few red clusters that are best explained
by intermediate ages (a few Gyr). Generally, there is evidence that the red,
metal-rich sub-population has a complex colour structure and is itself composed
of clusters spanning a large metallicity and, potentially, age range. This
contrasts with the blue, metal-poor population which appears very homogeneous
in all galaxies observed so far.Comment: accepted in A&A, 13 pages using the A&A macr
The star cluster system of the 3 Gyr old merger remnant NGC 1316: Clues from optical and near-infrared photometry
The giant merger remnant galaxy NGC 1316 (Fornax A) is an ideal probe for
studying the long-term effects of a past major merger on star cluster systems,
given its spectroscopically derived merger age of ~3 Gyr which we reported in a
recent paper. Here we present new ground-based, large-area optical and near-IR
imaging of star clusters in NGC 1316, complemented with deep HST/WFPC2 imaging.
We find that the optical-near-IR colours and luminosities of the brightest ~10
clusters in NGC 1316 are consistent with those of intermediate-age (2-3 Gyr)
populations. Unlike `normal' giant ellipticals, the B-I colour distribution of
clusters in NGC 1316 is not clearly bimodal. However, the luminosity functions
(LFs) of the blue and red parts of the cluster colour distribution are
different: The red cluster LF is well represented by a power law with index
-1.2 +/- 0.3, extending to about 1.5 mag brighter (in B) than those of typical
giant ellipticals. In contrast, the shape of the blue cluster LF is consistent
with that of `normal' spiral and elliptical galaxies. We conclude that the star
cluster system of NGC 1316 is a combination of a population of age ~3 Gyr
having roughly solar metallicity and a population of old, metal-poor clusters
which probably belonged to the pre-merger galaxies. After the 3 Gyr old,
metal-rich clusters fade to an age of 10 Gyr, they will form a red `peak' in a
bimodal cluster colour distribution. This `red peak' will have a colour
consistent with that found in `normal, old' giant ellipticals of the same
galaxy luminosity (taking age dimming into account). These features of the star
cluster system of NGC 1316 are fully consistent with scenarios for forming
`normal' giant elliptical galaxies through gas-rich mergers at look-back times
\ga 10 Gyr.Comment: 21 pages, LaTeX format, figures included using psfig.sty. Accepted by
MNRAS. Abstract below is abridged (full abstract in paper). Used 8-bit
mapping to limit size of figures (24-bit mapping in MNRAS paper
The Elliptical Galaxy formerly known as the Local Group: Merging the Globular Cluster Systems
Prompted by a new catalogue of M31 globular clusters, we have collected
together individual metallicity values for globular clusters in the Local
Group. Although we briefly describe the globular cluster systems of the
individual Local Group galaxies, the main thrust of our paper is to examine the
collective properties. In this way we are simulating the dissipationless merger
of the Local Group, into presumably an elliptical galaxy. Such a merger is
dominated by the Milky Way and M31, which appear to be fairly typical examples
of globular cluster systems of spiral galaxies.
The Local Group `Elliptical' has about 700 +/- 125 globular clusters, with a
luminosity function resembling the `universal' one. The metallicity
distribution has peaks at [Fe/H] ~ -1.55 and -0.64 with a metal-poor to
metal-rich ratio of 2.5:1. The specific frequency of the Local Group Elliptical
is initially about 1 but rises to about 3, when the young stellar populations
fade and the galaxy resembles an old elliptical. The metallicity distribution
and stellar population corrected specific frequency are similar to that of some
known early type galaxies. Based on our results, we briefly speculate on the
origin of globular cluster systems in galaxies.Comment: 22 pages, Latex, 4 figures, 5 tables, submitted to A &
M dwarfs in the b201 tile of the VVV survey: Colour-based Selection, Spectral Types and Light Curves
The intrinsically faint M dwarfs are the most numerous stars in the Galaxy,
have main-sequence lifetimes longer than the Hubble time, and host some of the
most interesting planetary systems known to date. Their identification and
classification throughout the Galaxy is crucial to unravel the processes
involved in the formation of planets, stars and the Milky Way. The ESO Public
Survey VVV is a deep near-IR survey mapping the Galactic bulge and southern
plane. The VVV b201 tile, located in the border of the bulge, was specifically
selected for the characterisation of M dwarfs. We used VISTA photometry to
identify M dwarfs in the VVV b201 tile, to estimate their subtypes, and to
search for transit-like light curves from the first 26 epochs of the survey.
UKIDSS photometry from SDSS spectroscopically identified M dwarfs was used to
calculate their expected colours in the VISTA system. A colour-based
spectral subtype calibration was computed. Possible giants were identified by a
reduced proper motion diagram. The light curves of
12.8<<15.8 colour-selected M dwarfs were inspected for signals consistent
with transiting objects. We identified 23,345 objects in VVV b201 with colours
consistent with M dwarfs. We provided their spectral types and photometric
distances, up to 300 pc for M9s and 1.2 kpc for M4s, from
photometry. In the range 12<<16, we identified 753 stars as possible
giants out of 9,232 M dwarf candidates. While only the first 26 epochs of VVV
were available, and 1 epoch was excluded, we were already able to identify
transit-like signals in the light curves of 95 M dwarfs and of 12 possible
giants. Thanks to its deeper photometry (4 magnitudes deeper than 2MASS),
the VVV survey will be a major contributor to the discovery and study of M
dwarfs and possible companions towards the center of the Milky Way.Comment: 11 pages, 4 figures. Accepted for publication in Catalogs and data of
Astronomy and Astrophysic
The long bar as seen by the VVV Survey: II. Star counts
Context: There is still some debate about the presence and the morphological
properties of the long bar in the inner Galaxy.
Aims: We investigate the morphological properties of the long Galactic bar
using the VVV survey extending star counts at least 3 mag deeper than 2MASS.
Our study covers the relatively unexplored negative longitudes of the Galactic
bar. We obtain a detailed description of the spatial distribution of star
counts towards the long Galactic bar as well as to measure its parameters.
Methods: We performed star counts towards -20<l<0 deg., |b|< 2 deg. using
VVV, 2MASS, and GLIMPSE data. We applied an average interstellar extinction
correction. We also adjusted latitudinal profiles to obtain the centroid
variation and bar thickness.
Results: We probe the structure of long Galactic bar, as well as its far edge
at l=-14 deg. The differences between counts with and without extinction
correction allow us to produce a crude extinction map showing regions with high
extinction, mainly beyond the end of long Galactic bar. The latitudinal
profiles show evidence of the centroid vertical variation with Galactic
longitude reaching a minimum at l=-13.8 deg. The bar has an inclination angle
43+/-5 deg with respect to the line Sun-Galactic center. In addition, we have
determined the bar parameters, such as thickness, length, and stellar
distribution.Comment: Accepted for publication at Astronomy \& Astrophysics (17 pages, 17
figures). Second version: 1- Only minor changes on the abstract of the
manuscript. 2- Abstract of arXiv.org modified to be in accordingly to
Astronomy & Astrophysics abstract structur
- …
